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a b s t r a c t

In this work we propose upscaling method for nonlinear Forchheimer flow in heterogeneous porous
media. The generalized Forchheimer law is considered for incompressible and slightly-compressible sin-
gle-phase flows. We use recently developed analytical results (Aulisa et al., 2009) [1] and formulate the
resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity
depending on the pressure gradient. The coarse scale parameters for the steady state problem are deter-
mined so that the volumetric average of velocity of the flow in the domain on fine scale and on coarse
scale are close. A flow-based coarsening approach is used, where the equivalent permeability tensor is
first evaluated following streamline methods for linear cases, and modified in order to take into account
the nonlinear effects. Compared to previous works (Garibotti and Peszynska, 2009) [2], (Durlofsky and
Karimi-Fard) [3], this approach can be combined with rigorous mathematical upscaling theory for mono-
tone operators, (Efendiev et al., 2004) [4], using our recent theoretical results (Aulisa et al., 2009) [1]. The
developed upscaling algorithm for nonlinear steady state problems is effectively used for variety of het-
erogeneities in the domain of computation. Direct numerical computations for average velocity and pro-
ductivity index justify the usage of the coarse scale parameters obtained for the special steady state case
in the fully transient problem. For nonlinear case analytical upscaling formulas in stratified domain are
obtained. Numerical results were compared to these analytical formulas and proved to be highly
accurate.

Published by Elsevier Ltd.

1. Introduction

In recent years, using near well data, such as core data, engi-
neers have been able to create increasingly complex and detailed
geocellular models. This compels taking into account highly heter-
ogeneous geological parameters of reservoirs. Such descriptions
typically require a high number of computational cells which is dif-
ficult to simulate, e.g., in well optimization problems and history
matching. To reduce the computational complexity, some type of
coarsening and upscaling procedures are needed. The geological
parameters, such as permeability or transmissibility and porosity,
should be upscaled for each coarse-grid block.

The variety of approaches for upscaling and multiscale methods
of fine scaled geological parameters have been proposed for the
linear Darcy case (see [5–10]). These approaches include upscaling
methods, see [5,8–10] and multiscale methods [4–7]. In both

approaches, a goal is to represent the solution on a coarse grid
where each coarse-grid block consists of a union of connected
fine-grid blocks. In upscaling methods, the upscaled permeability
is calculated in each coarse-grid block by solving local problems
with specified boundary conditions and calculating the average
of the flux. Local problems can be solved in extended domains
for computing the effective properties. In multiscale methods,
the local multiscale basis functions are computed instead of local
effective properties and these basis functions are coupled via a glo-
bal formulation.

The extensions of these methods to nonlinear flows, such as
Forchheimer flow, are carried out in several papers, see [2,3] which
are closely related to our work. In [3], the authors consider the use
of iterative upscaling techniques where at each iteration, local–
global upscaling technique is used. The work [2] closely relates
to our work. In [2], the authors start with a full nonlinear upscaling
where the upscaled conductivity is a nonlinear function of the
pressure gradient. The starting point of our approach follows [2].
In [2], the authors further use special nonlinear forms for upscaled
Forchheimer flows that simplify the upscaling calculations. In the
current paper, our goal is to carry out a nonlinear upscaling using
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new formulations of Forchheimer flows. We emphaisize that the
monotonicty of the fine-scale operator (as discussed in [2]) is
important for formulating full nonlinear homogenization.

In current paper, we utilize recent finding [1], where Forchhei-
mer equation is written in an equivalent form using monotone
nonlinear permeability function depending on gradient of pres-
sure. This equivalent formulation reduces the original system of
equations for pressure and velocity to one nonlinear parabolic or
elliptic equation for pressure only. The ellipticity constant of this
equation degenerates as the pressure gradient converges to infin-
ity. The rate of the degeneration is effectively controlled by the
order of Forchheimer polynomial and the structure of the coeffi-
cients has the important monotonicity properties (see Proposition
III.6 and Lemma III.10 from [1]). It allows to prove results on the
well-posedness of the initial boundary value problem and apply
numerical homogenization theory.

In this paper we present the upscaling algorithm for fluid flow
in incompressible media for two types of fluids, incompressible
and slightly compressible. Steady state problem for incompressible
flow reduces to the degenerate elliptic equation, however the cor-
responding problem for compressible fluid reduces to time depen-
dent degenerate parabolic equation.

In this paper we first introduce and investigate the upscaling
procedure for the time independent problem in case of incom-
pressible fluid. In case of time dependent problem the question
one should address is that while the solution is time dependent,
the upscaled parameters are time independent for incompressible
media. We use the upscaled parameters obtained for steady state
case in the time dependent problem. This procedure is justified
by the results obtained in our papers [11,12] and the numerical
experiment presented in this article. Namely, we will relate the
fine scale fully transient solution to the special pseudo steady state
(PSS) solution. This solution has a form At þWðxÞ, where A is a con-
stant and WðxÞ is a solution of auxiliary steady state boundary
value problem for the equation with non zero RHS. According to
our results in [11,12] under some assumptions the pseudo steady
state pressure and velocity serve as pseudo attractors for fully tran-
sient pressure and velocity. To upscale the steady state equation
we determine the coarse scale porosity and nonlinear permeabil-
ity, so that the average volumetric velocity of the flow is preserved.

To evaluate the efficiency of the described method in the time
dependent case we compare the productivity index (PI) of the well
on fine and coarse grids. The PI is inversely proportional to the dif-
ference between the average of pressure in the reservoir and on the
well. We select the PI as a criteria for the evaluation of the upscal-
ing method as it is widely used by the engineers, see [13–16] and
references therein. In the numerical examples we calculate the dif-
ference between the values of the PIs on fine and coarse grids. Our
numerical results show that the proposed algorithm provides accu-
rate results for different heterogeneities and nonlinearities in
steady state case. Resulting transient velocity and PI on coarse
scale also provide accurate approximation of corresponding tran-
sient parameters on fine scale for heterogeneous fields considered
in the paper. Clearly the accuracy of the proposed method depends
on heterogeneities as in a single-phase upscaling, [17], i.e., for
highly heterogeneous fields, the accuracy of the method will
decrease. The main goal of this paper is to propose a method to
handle the nonlinearities and, thus, we do not consider highly het-
erogeneous fields [17].

The paper is structured as follows. In Section 2.1 we introduce
g-Forchheimer equations, review their properties and formulate
the problem. In Section 2.2 we obtain the form of the coarse scale
equation for generalized Forchheimer flow. In Section 2.3 we intro-
duce the special steady state equation which will be used for
upscaling for flow of slightly compressible fluid. We then discuss
the theoretical results justifying the use of upscaled parameters

from steady state problem in time dependent problem. Section 3
is devoted to description of upscaling algorithm. In Section 4 we
obtain the explicit analytical upscaling formulas in case of incom-
pressible fluid for nonlinear Forchheimer flow in stratified region.
In contrast with the linear case, the formulas for nonlinear case
may depend on boundary data, see (42) and (44). In Sections 5.1
and 5.2 we present the numerical results for the incompressible
and slightly compressible flows correspondingly. In Section 5.3
we test the usage of the parameters obtained by upscaling steady
state equation in transient case. We present the theoretical and
numerical result on convergence of transient velocity and PI to cor-
responding steady state values for upscaled problem.

2. Problem statement and preliminary results

2.1. Generalized Forchheimer equation

Let X � Rn be the flow domain. Darcy equation describes the
linear dependence of velocity u on the pressure gradient rp

u ¼ � 1
l

kðxÞrp: ð1Þ

Here kðxÞ is symmetric positive definite permeability tensor, l is the
viscosity of the fluid.

Forchheimer equation, [18], is known to generalize Darcy’s
equation to take into account inertial terms and has been intro-
duced in the literature in several forms. E.g., see [19, p. 182]

Two term law : uþ bðxÞkuku ¼ � 1
l

kðxÞrp;

Three term law : uþ a1ðxÞkukuþ a2ðxÞkuk2u ¼ � 1
l kðxÞrp;

Power law : uþ b1ðxÞkukm�1u ¼ � 1
l

kðxÞrp; 1:6 6 m 6 2:

ð2Þ

From here on k � k is the l2 vector norm. Coefficients
bðxÞ; a1ðxÞ; a2ðxÞ; b1ðxÞ and power m are empirical.

All these relations can be written in a compact form as

gðkuk; xÞu ¼ � 1
l

kðxÞrp; ð3Þ

for some function gðs; xÞ P 0 for s P 0. We will refer to (3) as g-
Forchheimer ðmomentumÞ equation. For simplicity from now on we
assume the viscosity l ¼ 1.

To develop rigorous numerical homogenization concepts for
Forchheimer flow, we use the results in [1] which allows writing
(3) as a monotone relation for rp (see Eq. (6) and the discussion
after it). Moreover, this allows obtaining the well-posedness
results of the corresponding initial boundary value problem and
allows estimating the residual error in numerical homogenization
because of monotonicity. It was shown in [1] that the monotone
relation between velocity and gradient of pressure exists for gen-
eral functions gðs; xÞ in the form

gðs; xÞ ¼ 1þ
Xl

j¼1

ajðxÞsaj

¼ 1þ a1ðxÞsa1 þ a2ðxÞsa2 þ � � � þ alðxÞsal ; ð4Þ

where l P 0, the exponents satisfy 0 < aj < ajþ1, and the coeffi-
cients ajðxÞ � 0; j ¼ 1; . . . ; l. Thus defined function g in (3) includes
all the known cases of Forchheimer flow (1) and (2).

In order to make further constructions we rewrite (3) in the
equivalent form solving u implicitly in terms of rp. To that pur-
pose using the notation hðsÞ ¼ sgðs; xÞ ¼ knk and s ¼ h�1ðknkÞ,
where s; knk P 0, we introduce the function
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