
A parallel dynamic programming algorithm for multi-reservoir system
optimization

Xiang Li a, Jiahua Wei a, Tiejian Li a, Guangqian Wang a, William W.-G. Yeh b,⇑
a State Key Laboratory of Hydroscience & Engineering, Tsinghua University, Beijing 100084, China
b Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA

a r t i c l e i n f o

Article history:
Received 8 May 2013
Received in revised form 8 January 2014
Accepted 12 January 2014
Available online 30 January 2014

Keywords:
Dynamic programming
Multi-reservoir system optimization
Joint operation
Parallel computing

a b s t r a c t

This paper develops a parallel dynamic programming algorithm to optimize the joint operation of a
multi-reservoir system. First, a multi-dimensional dynamic programming (DP) model is formulated for
a multi-reservoir system. Second, the DP algorithm is parallelized using a peer-to-peer parallel paradigm.
The parallelization is based on the distributed memory architecture and the message passing interface
(MPI) protocol. We consider both the distributed computing and distributed computer memory in the
parallelization. The parallel paradigm aims at reducing the computation time as well as alleviating the
computer memory requirement associated with running a multi-dimensional DP model. Next, we test
the parallel DP algorithm on the classic, benchmark four-reservoir problem on a high-performance com-
puting (HPC) system with up to 350 cores. Results indicate that the parallel DP algorithm exhibits good
performance in parallel efficiency; the parallel DP algorithm is scalable and will not be restricted by the
number of cores. Finally, the parallel DP algorithm is applied to a real-world, five-reservoir system in
China. The results demonstrate the parallel efficiency and practical utility of the proposed methodology.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming (DP), an algorithm attributed largely to
Bellman [3], is developed for optimizing a multi-stage (the term
‘‘stage’’ represents time step throughout the paper) decision pro-
cess. If the return or cost at each stage is independent and satisfies
the monotonicity and separability conditions [23], the original
multi-stage problem can be decomposed into stages with decisions
required at each stage. The decomposed problem then can be
solved recursively, two stages at a time, using the recursive equa-
tion of DP. DP is particularly suited for optimizing reservoir man-
agement and operation as the structure of the optimization
problem conforms to a multi-stage decision process. Over the past
four decades, DP had been used extensively in the optimization of
reservoir management and operation [4,6,8,13,22,35,37–40].

In the discrete form of DP, storage of each reservoir is discret-
ized into a finite number of levels. By exhaustive enumeration over
all possible combinations of discrete levels at each stage for all res-
ervoirs in a system, global optimality can be assured in a discrete
sense. However, the well-known ‘‘curse of dimensionality’’ [2]

limits the application of DP to multi-state variable problems, as
the state space increases exponentially with an increase in the
number of state variables. This drastic increase in state space and
the consequent random access memory (RAM) requirement
quickly can exceed the hardware capacity of a modern computer
[13]. A variety of DP variants, such as incremental dynamic pro-
gramming (IDP) [15], dynamic programming successive approxi-
mations (DPSA) [14], incremental dynamic programming and
successive approximations (IDPSA) [32] and discrete differential
dynamic programming (DDDP) [9] have been proposed to alleviate
the dimensionality problem. However these variants all require an
initial trajectory for each state variable. For a non-convex problem,
there is no assurance of convergence to the global optimum. Re-
cently, Mousavi and Karamouz [22] reduced the computation time
of a DP model for a multi-reservoir system by diagnosing infeasible
storage combinations and removing them from further computa-
tions. Zhao et al. [40] proposed an improved DP model for optimiz-
ing reservoir operation by taking advantage of the monotonic
relationship between reservoir storage and the optimal release
decision. However, the model only can be applied to reservoir
operation with a concave objective function.

Because of the hardware limitations of a single computer as
well as large-scale computing requirements, parallel computing
has been applied in many fields [25]. In the water resources field,
there are several successful examples. Bastian and Helmig [1]

http://dx.doi.org/10.1016/j.advwatres.2014.01.002
0309-1708/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 3108252300; fax: +1 3108257581.
E-mail addresses: l-xiang09@mails.tsinghua.edu.cn, ideal.thu@gmail.com (X. Li),

weijiahua@tsinghua.edu.cn (J. Wei), litiejian@tsinghua.edu.cn (T. Li), dhhwgq@
tsinghua.edu.cn (G. Wang), williamy@seas.ucla.edu (W.W.-G. Yeh).

Advances in Water Resources 67 (2014) 1–15

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2014.01.002&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2014.01.002
mailto:l-xiang09@mails.tsinghua.edu.cn
mailto:ideal.thu@gmail.com
mailto:weijiahua@tsinghua.edu.cn
mailto:litiejian@tsinghua.edu.cn
mailto:dhhwgq@tsinghua.edu.cn
mailto:dhhwgq@tsinghua.edu.cn
mailto:williamy@seas.ucla.edu
http://dx.doi.org/10.1016/j.advwatres.2014.01.002
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


employed a data parallel implementation of a Newton-multi-grid
algorithm for two-phase flow in porous media. Kollet and Maxwell
[10] incorporated an efficient parallelism into an integrated hydro-
logic model – ParFlow. Tang et al. [31] used the master–slave and
multi-population parallelization schemes for the Epsilon-Nondom-
inated Sorted Genetic Algorithm-II and applied them to several
water resources problems. Wang et al. [33] designed a common
parallel framework, while Li et al. [16] introduced a dynamic par-
allel algorithm for hydrological model simulations. Rouholahnejad
et al. [27] proposed a parallelization framework for hydrological
model calibration. Wu et al. [36] parallelized the Soil and Water
Assessment Tool. These previous studies demonstrated that by
using parallel computing associated with proper parallelization
strategies for optimization or simulation, solutions can be im-
proved and computation times can be reduced dramatically.
Although parallel computing has been used extensively in hydro-
logic models, the potential has not been explored fully in the field
of reservoir operation [29].

Over the last several decades, with the rapid development of
high-performance computing (HPC) environments, parallel dy-
namic programming algorithm has been studied from theories
gradually to applications. From the theoretical point of view,
Casti et al. [5] presented various forms of parallelism and the
corresponding parallel algorithms for DP. Rytter [28] considered
some DP problems and estimated the computation complexity
and the number of computing processes based on a hypothetical
parallel random access machine, namely the shared memory
architecture. However, the shared memory architecture may
not be supportable for large RAM requirement problems, since
all parallel tasks access the finite RAM in the architecture (be-
cause of motherboard size restrictions). From the practical point
of view, El Baz and Elkihel [7] designed several load-balancing
strategies and applied a parallel DP algorithm with Open MP, a
protocol based on the shared memory architecture, to the 0–1
knapsack problem. Martins et al. [19] and Tan et al. [30] parall-
elized DP algorithms for a class of problems, such as biological
sequence comparisons. Piccardi and Soncini-Sessa [24] studied
the discretization and inflow correlation on the solution reliabil-
ity of a stochastic dynamic programming (SDP) and exploited
parallel computing to a one-reservoir optimal control problem;
the parallelization was attributed largely to a vectorizing com-
piler or parallelizing compiler. Li et al. [17] implemented a
knowledge-based approach to accurately determine hydropower
generation and developed a master–slave parallel DP algorithm
on an HPC system to optimize the coordinated operation of
the Three Gorges Project and Gezhouba Project cascade hydro-
power plants in China. The master–slave is a frequently-used
parallel paradigm for parallelizing a DP algorithm, where the
master process has a full version of the DP algorithm, and calls
slave processes to evaluate and return objective values and saves
all variables in the RAM of the master process. However, this
parallel paradigm merely shortens computation time but does
not alleviate the RAM requirement.

In this paper, we develop a parallel DP algorithm for multi-
reservoir system optimization. The parallel DP algorithm aims
at reducing the computation time and alleviating the RAM
requirement, taking advantage of parallel computing on the dis-
tributed memory architecture. The paper is organized as follows:
Section 2 formulates a DP model for a multi-reservoir system
optimization problem; Section 3 analyzes the parallelism inher-
ent to the DP algorithm and then proposes a peer-to-peer paral-
lel paradigm for the DP algorithm; Section 4 considers the classic
four-reservoir example and tests the parallel DP algorithm on
the problem; Section 5 applies the parallel DP algorithm to a
real-world five-reservoir system in China; finally, Section 6 pre-
sents the conclusions.

2. Dynamic programming model

2.1. Objective function

A typical objective function for the optimal operation of a multi-
reservoir system is either to maximize benefit or minimize opera-
tional cost. If more than one objective is involved, they can be com-
bined by the weighting method to form a composite objective
function. Without loss of generality, let us consider the maximiza-
tion problem. According to Bellman’s principle of optimality [3],
the traditional forward recursive equation of an n-dimensional
DP model (the term ‘‘dimension’’ here refers to the number of res-
ervoirs) can be represented as:

F�tþ1ðSðt þ 1ÞÞ ¼maxfftðSðtÞ; Sðt þ 1ÞÞ þ F�t ðSðtÞÞg ð1Þ

where t is the time index, t 2 ½1; T�; SðtÞ is the storage vector at the
beginning of time step t; SðtÞ ¼ ½S1ðtÞ; . . . ; SiðtÞ; . . . ; SnðtÞ�T ; Sðt þ 1Þ is
the storage vector at the end of time step t; i is the reservoir index,
i 2 ½1; n�; F�t ð�Þ is the maximum cumulative return from the first
time step to the beginning of the tth time step resulting from the
joint operation of n reservoirs; initially, F�1ð�Þ ¼ 0; F�tþ1ð�Þ is the
maximum cumulative return from the first time step to the end
of the tth time step resulting from the joint operation of n reser-
voirs; and ftð�Þ is the objective function to be maximized during
time step t. Note that Eq. (1) is the inverted form of a DP model with
reservoir storages as the decision variables. In the non-inverted DP
model, the releases are the decision variables. For a deterministic
DP model, the ending storage is related to the beginning storage
by the continuity equation.

2.2. Constraints

In the operation of a multi-reservoir system, each individual
reservoir is subject to its own set of constraints, while the reservoir
system is subject to system constraints brought by the intercon-
nection of reservoirs. Specifically, we consider the following
constraints:

� Continuity equation:

Sðt þ 1Þ ¼ SðtÞ þ IðtÞ �M � RðtÞ 8t ð2Þ

where IðtÞ is the vector of inflows to reservoirs (i ¼ 1; . . . ;n) during
time step t; RðtÞ is the vector of total releases from reservoirs
(i ¼ 1; . . . ; n) during time step t; RðtÞ ¼ ½R1ðtÞ; . . . ;RiðtÞ . . . ;RnðtÞ�T ;
and M is the n� n reservoir system connectivity matrix. Without
loss of generality, we assume that evaporation loss is balanced by
precipitation.
� Initial and final reservoir storages:

Sð1Þ ¼ Sinitial ð3Þ

SðT þ 1ÞP Sfinal ð4Þ

where Sinitial and Sfinal are the vectors of initial storages and final ex-
pected storages of reservoirs (i ¼ 1; . . . ;n).
� Lower and upper bounds on storages:

Sminðt þ 1Þ 6 Sðt þ 1Þ 6 Smaxðt þ 1Þ 8t ð5Þ

where Sminðt þ 1Þ and Smaxðt þ 1Þ are the vectors of minimum and
maximum storages of reservoirs (i ¼ 1; . . . ;n) at the end of time step
t.
� Lower and upper bounds on releases:

For all reservoirs:

RminðtÞ 6 RðtÞ 6 RmaxðtÞ 8t ð6Þ

where RminðtÞ is the vector of the minimum required releases from
reservoirs (i ¼ 1; . . . ;n) during time step t; and RmaxðtÞ is the vector

2 X. Li et al. / Advances in Water Resources 67 (2014) 1–15



Download English Version:

https://daneshyari.com/en/article/4525573

Download Persian Version:

https://daneshyari.com/article/4525573

Daneshyari.com

https://daneshyari.com/en/article/4525573
https://daneshyari.com/article/4525573
https://daneshyari.com

