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a b s t r a c t

The implementation of Monte Carlo simulations (MCSs) for the propagation of uncertainty in real-world
seawater intrusion (SWI) numerical models often becomes computationally prohibitive due to the large
number of deterministic solves needed to achieve an acceptable level of accuracy. Previous studies have
mostly relied on parallelization and grid computing to decrease the computational time of MCSs. How-
ever, another approach which has received less attention in the literature is to decrease the number of
deterministic simulations by using more efficient sampling strategies. Sampling efficiency is a measure
of the optimality of a sampling strategy. A more efficient sampling strategy requires fewer simulations
and less computational time to reach a certain level of accuracy. The efficiency of a sampling strategy
is highly related to its space-filling characteristics.

This paper illustrates that the use of optimized Latin hypercube sampling (OLHS) strategies instead of
the widely employed simple random sampling (SRS) and Latin hypercube sampling (LHS) strategies, can
significantly improve sampling efficiency and hence decrease the simulation time of MCSs. Nine OLHS
strategies are evaluated including: improved Latin hypercube sampling (IHS); optimum Latin hypercube
(OLH) sampling; genetic optimum Latin hypercube (GOLH) sampling; three sampling strategies based on
the enhanced stochastic evolutionary (ESE) algorithm namely up-ESE which employs the up space-filling
criterion, CLD-ESE which utilizes the centered L2-discrepancy (CLD) space-filling criterion, and SLD-ESE
which uses the star L2-discrepancy (SLD) space-filling criterion; and three sampling strategies based
on the simulated annealing (SA) algorithm namely up-SA which employs the up criterion, CLD-SA which
uses the CLD criterion, and SLD-SA which utilizes the SLD criterion. The study applies SRS, LHS and the
nine OLHS strategies to MCSs of two synthetic test cases of SWI. The two test cases are the Henry problem
and a two-dimensional radial representation of SWI in a circular island. The comparison demonstrates
that the CLD-ESE strategy is the most efficient among the evaluated strategies. This paper also demon-
strates how the space-filling characteristics of different OLHS designs change with variations in the input
arguments of their optimization algorithms.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models have found widespread applications in sys-
tem understanding and future predictions of seawater intrusion
(SWI) into coastal aquifers [1,2]. However in some instances SWI
simulations are carried out without any historical data available
for model calibration, or more commonly without any information
on the boundary conditions that might prevail in the simulation of
future time intervals (refer to [1] for an example related to the re-
charge boundary conditions). In both cases, model predictions are

entirely reliant on the assumptions made by the modeler regarding
model structure and inputs [3]. The unreliability or uncertainty in
model structure and inputs propagates through the model and re-
sults in uncertainty of the output quantities of interest (QoI). Quan-
tifying this uncertainty is known as uncertainty propagation (UP)
analysis [4]. The same problem also arises in the presence of histor-
ical data for model calibration. In this case, model inputs are af-
fected by uncertainty due to a number of factors such as the
concept of equifinality in model calibration [5] and the existence
of stochastic, measurement, representativity and parameter uncer-
tainties. Equifinality arises from the fact that in the process of mod-
el calibration, many complex SWI models lack ‘‘optimum’’
parameter sets and instead have many distinct sets of input
parameter values within a model structure that are consistent with
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the data available for calibration [3]. Stochastic uncertainty occurs
due to randomness as an objective fact of the phenomenon, most
notably in defining SWI boundary conditions [6]. Measurement
uncertainty is caused by the intrinsic noise of measurement appa-
ratus [7]. Representativity uncertainty arises from the difference
between the spatial and temporal sampling footprint of measure-
ments and the defined spatial and temporal representation of real-
ity within the framework of the SWI numerical model [8,9].
Parameter uncertainty is the epistemic uncertainty resulting from
the lack of knowledge about input parameters which cannot be di-
rectly observed and are often empirically determined [10]. Param-
eter uncertainty is particularly important in the estimation of input
parameters such as longitudinal and transverse dispersivities and
large-scale hydraulic conductivities.

UP analysis allows the modeler to estimate the effects of quan-
tified input uncertainties (described by fuzzy or probability distri-
butions) on the model output QoI, and there by replace
deterministic solutions with a range of solutions accommodated
with their respective probabilities [3,4,6]. The probabilistic repre-
sentation of output QoI can then be used to estimate prediction
intervals, probabilities for the failure of specific management plans
or the exceedance of critical thresholds in SWI risk assessments. It

should be noted that UP analysis does not replace history matching
or model calibration. However model calibration (especially in the
form of stochastic inverse modeling) can provide valuable informa-
tion for probabilistic characterisation of model inputs which can
then be fed into the UP analysis procedure [3].

Monte Carlo simulations (MCSs) are the most common ap-
proaches for propagating uncertainty in mathematical and compu-
tational models, most notably because they are: (1) transparent
and simple to implement, (2) non-intrusive and able to employ
existing codes, (3) capable of solving a large class of uncertainty
propagation problems, (4) easy to parallelize because they fall into
the category of embarrassingly parallel algorithms, (5) robust for
discontinuities, (6) suitable for many probability distribution types
(e.g. normal, gamma, beta, Poisson, Weibul, etc.), (7) appropriate
for large number of uncertainties, (8) shown to converge, although
slowly, without stringent regularity conditions and at the same
rate independent of the dimension of random variables, (9) they
also invoke fewer assumptions and require less user-inputs than
other propagation tools such as polynomial chaos expansions
[11], and (10) their accuracy can be fixed in advance according to
the level of risk associated with a decision [4,12–16]. As a result,
Monte Carlo based UP is progressively finding applications in many

Nomenclature

n sample size
x uncertain input variable(s)
S(x) output quantity of interest
fX(x) probability density function describing the uncertainty

of x
E() expected value
x1,x2, . . .,xn n sample of xfSnðxÞ Monte Carlo estimate of E(S(x))
u nonempty subset of the coordinate indices
Cu u dimensional unit cube
X = {1, . . .,h} set of coordinate indices
Y set of n points {y1, . . .,yn}
Jy s dimensional interval uniquely defined by Y
Jyu

projection of Jy on Cu

VolðJyu
Þ volume of a subset Jyu

N(Yu, Ju) number of points of Yu falling in Jyu

CLD centered L2-discrepancy
d1

i ;d
2
i ; . . . ;du

i n samples within u
di set of n samples within u
p characterizes the Lp norm
up a family of distance based criteria
dup valid candidate points in the improved Latin hypercube

sampling strategy
NR number of rows in a matrix
NC number of columns in a matrix
eps the optimal stopping criterion in the optimum Latin

hypercube sampling strategy
maxSweeps the maximum number of times the columnwise–

pairwise algorithm is applied to all the columns in
the optimum Latin hypercube sampling strategy

pop the number of designs in the initial population of the
genetic algorithm

gen the number of generations over which the genetic algo-
rithm is applied

pMut the probability that a mutation occurs in a column of
the offspring in the genetic algorithm

JESE new designs generated in the inner loop of the en-
hanced stochastic evolutionary optimization algorithm

Th acceptance threshold in the enhanced stochastic evolu-
tionary optimization algorithm

inner_itESE number of iterations of the inner loop in the en-
hanced stochastic evolutionary optimization algorithm

outer_itESE number of iterations of the outer loop in the enhanced
stochastic evolutionary optimization algorithm

Lnew new sample design in each step of the simulated
annealing algorithm

Lold sample design in the previous step of the simulated
annealing algorithm

SC an space-filling criterion
T temperature in the simulated annealing algorithm
T0 the initial temperature in the simulated annealing

algorithm
a cooling factor in the simulated annealing algorithm
itSA number of iterations in the simulated annealing

algorithm
H1,H2, . . .,H5 reference nodes of the Henry problem
PH1,PH2, . . ., PH5 pressures in the reference nodes of the Henry

problem
CH1,CH2, . . .,CH5 concentrations in the reference nodes of the

Henry problem
I1, I2, . . ., I5 reference nodes of the two-dimensional radial island

problem
CI1,CI2, . . .,CI5 concentrations in the reference nodes of the two-

dimensional radial island problem
k permeability of the aquifer in the Henry problem
Q total constant fresh-water inflow on the inland bound-

ary in the Henry problem
l mean of the n-run analysis
li mean of the ith repetition of Monte Carlo simulations
r standard deviation of the n-run analysis
ri standard deviation of the ith repetition of Monte Carlo

simulations
lref means of the reference solutions
rref standard deviations of the reference solutions
j excess kurtosis of the n-run analysis
nr number of repetitions in the analysis
PI percent improvement
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