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a b s t r a c t

Climate change induced sea level rise will affect shallow estuarine habitats, which are already under
threat from multiple anthropogenic stressors. Here, we present the results of modelling to predict po-
tential impacts of climate change associated processes on seagrass distributions. We use a novel appli-
cation of relative environmental suitability (RES) modelling to examine relationships between variables
of physiological importance to seagrasses (light availability, wave exposure, and current flow) and sea-
grass distributions within 5 estuarine embayments. Models were constructed separately for Posidonia
australis and Zostera muelleri subsp. capricorni using seagrass data from Port Stephens estuary, New
South Wales, Australia. Subsequent testing of models used independent datasets from four other estu-
arine embayments (Wallis Lake, Lake Illawarra, Merimbula Lake, and Pambula Lake) distributed along
570 km of the east Australian coast. Relative environmental suitability models provided adequate pre-
dictions for seagrass distributions within Port Stephens and the other estuarine embayments, indicating
that they may have broad regional application. Under the predictions of RES models, both sea level rise
and increased turbidity are predicted to cause substantial seagrass losses in deeper estuarine areas,
resulting in a net shoreward movement of seagrass beds. Seagrass species distribution models developed
in this study provide a valuable tool to predict future shifts in estuarine seagrass distributions, allowing
identification of areas for protection, monitoring and rehabilitation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Habitat loss in marine environments has been linked to loss of
biodiversity (Stuart-Smith et al., 2015; Harasti, 2016) and species
extinctions (Dulvy et al., 2003). Estuaries, in particular, are suffering
habitat loss from anthropogenic impacts (e.g. coastal development,
pollution, eutrophication), due to the concentration of human ac-
tivities within and around estuarine systems (Duarte, 2002; Lotze
et al., 2006). Anthropogenic impacts are often compounded by
disturbances from extreme weather events (e.g., storm waves,
flooding), which are predicted to become more severe due to
climate change (Hoegh-Guldberg and Bruno, 2010; Emanuel, 2013),
and climate-induced sea level rise (Short and Neckles, 1999). There
is, therefore, a clear need to improve our understanding of the

relationships between estuarine habitats and their environment, to
inform management actions targeted at mitigating habitat loss.

Seagrass meadows are productive estuarine ecosystems that
support substantial biodiversity and provide valuable ecosystem
services (Barbier et al., 2011). While data on seagrass distributions
can be obtained using a combination of aerial/satellite imagery and
ground truthing (Kendrick et al., 2002; Creese et al., 2009), these
data do not provide insights into how species distributions will
change in response to future climate change. To address this, spe-
cies distribution modelling (SDM) provides a tool that can be used
to examine how species are likely to respond to future environ-
mental changes, allowing identification of areas most likely to
facilitate long-term species survival (Guisan and Thuiller, 2005).
Numerous techniques have been used for SDM including: presence/
absence basedmethods such as generalised linear modelling (GLM)
(Kelly et al., 2001), and generalised additive modelling (GAM)
(Downie et al., 2013); and methods using presence-only data such
as maximum entropy (Maxent) (Poulos et al., 2015), relative envi-
ronmental suitability (RES) (Kaschner et al., 2006), and the genetic
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algorithm rule-set procedure (GARP) (West et al., 2008).
Often, seagrass SDMs are not developed to be generally appli-

cable, but are constructed for specific objectives within localised
regions, such as predicting responses to changes in turbidity
(Lathrop et al., 2001) or identifying sites suitability for restoration
(Kelly et al., 2001). However, models with applicability across a
range of estuarine systems are useful for developing regional
management strategies (Van der Heide et al., 2009), and using
explanatory variables with direct linkages to the ecological re-
quirements of species is recommended where broader applicability
is an objective (Guisan and Zimmermann, 2000).

Within well-mixed estuarine embayments, temperature and
salinity are relatively uniform, and the dominant variables influ-
encing seagrass distributions are light availability (Abal and
Dennison, 1996; Duarte et al., 2007), wave exposure (Fonseca
et al., 2002; Grech and Coles, 2010), current flows (Bridges et al.,
1982; Fonseca and Bell, 1998), and tidal location (Van der Heide
et al., 2009). Seagrasses only occur where there is sufficient light
for photosynthesis (Duarte et al., 2007), with light availability at the
seabed influenced by water depth and turbidity (Anthony et al.,
2004; Greve and Krause-Jensen, 2005). Furthermore, seagrasses
are influenced by tidal location with some species occurring inter-
tidally, while others are predominantly subtidal (Van der Heide
et al., 2009). Waves influence seagrass distributions through
damaging and uprooting established plants, and preventing set-
tlement of seeds (Carruthers et al., 2002), with negative effects
concentrated in shallow areas where waves generate substantial
forces at the seabed (Rohweder et al., 2012). Currents also nega-
tively impact seagrasses (Fonseca and Bell, 1998), with strong cur-
rents, driven by tidal and river flows, generating substantial forces
at the seabed (Jiang et al., 2011).

Here, we developed RESmodels for large estuarine embayments
in New South Wales (NSW), Australia, using variables of physio-
logical importance to seagrasses (i.e. light availability, wave expo-
sure, and current flow), with the objective of testing model
transferability, in terms of the ability to use models created in one
estuary to predict seagrass distributions for other estuaries. Models
were created using data from Port Stephens and tested in four other
NSW estuarine embayments, spanning over 570 km of the NSW
coastline. This represents the first application of RES to prediction
of estuarine seagrass distributions, with RES previously primarily
used for predicting global distributions of marine species (Ready
et al., 2010).

Although broad-scale reviews of the probable response of sea-
grasses to climate change have been conducted (Short and Neckles,
1999; Bj€ork et al., 2008), relatively few studies have examined
changes in seagrass distributions at a regional scale in response to
sea level rise and increased turbidity (but see Carr et al., 2011). It
has been projected that climate change will lead to substantial sea
level rise over the coming century (Church et al., 2013) and may
also lead to regional increases in wind velocities, waves, currents,
and turbidity through increased storm activity and floods (Bj€ork
et al., 2008). We therefore used the RES models to calculate
changes in seagrass distributions for projected climate change
induced sea level rises, and for changes in turbidity. This allowed us

to assess locations where seagrass loss is likely to occur, and to
identify areas of high resilience where seagrasses will be relatively
unaffected.

2. Material and methods

2.1. Study sites

This study examined five micro-tidal (tidal range < 2 m) estu-
arine embayments in NSW, Australia (Table 1, Fig. 1). Each estuary
contained substantial areas of subtidal seagrasses (i.e. Posidonia
australis, Zostera muelleri subspecies capricorni (hereafter
Z. muelleri), and Halophila ovalis) (Creese et al., 2009). Separate RES
models were constructed for P. australis and Z. muelleri using data
from Port Stephens (Fig. 1), as this embayment contained both
seagrass species, and the embayment had widely varying levels of
turbidity, wave exposure, and tidal currents, making it ideally
suited for developing models with general applicability. A RES
model for H. ovaliswas not constructed as this species generally has
sparse cover and displays seasonal changes in distribution (Stewart
and Fairfull, 2007). Current seagrass distributions for P. australis and
Z. muelleriwithin Port Stephens were obtained from recent surveys
(Davis et al., 2016). Distribution maps were generated from high-
resolution (7.5 cm), geo-referenced aerial photographs from
August 2014 (Nearmap, 2014) which were ground-truthed using
towed video (Davis et al., 2015). Seagrass distributions for other
estuaries were obtained from the study by Creese et al. (2009), with
maps generated from orthorectified aerial photographs with
boundary locations and species presence verified in the field.

2.2. Calculation of explanatory variables

Light availability (Light), tidal velocity (Current), and orbital ve-
locity at the seabed due towaves (Waves) were calculated for use as
explanatory variables in RES models. Light availability was defined
using the ratio of photosynthetically-available radiation (PAR) at
the seabed (Ez) to PAR at the surface (E0), and calculated using Beer-
Lambert's law: Light ¼ Ez/E0 ¼ e�K

d
(PAR)z where; z ¼ water depth,

and Kd(PAR) ¼ irradiance attenuation coefficient. Values of Kd(PAR)
were calculated from measured Secchi depths (ZSD) using the
relationship (Kd(PAR) ¼ 1.4/ZSD) derived for turbid coastal waters
by Holmes (1970). Secchi depth data were obtained as point mea-
surements at multiple sites within each estuary, over extended
periods (>12 months), allowing derivation of time-averaged Secchi
depth distributions, with interpolation of Secchi depths between
measurement sites. For Port Stephens, average Secchi depths varied
from 8.8 m at the estuary entrance to 2.2 m at the western end of
the embayment (pers. obs.). Secchi depths forWallis Lakes and Lake
Illawarra were obtained as point measurements from the online
data repository OzCoasts (2015), with Secchi depths inWallis Lakes
varying from 2.6 m at the estuary entrance to 0.5m in theWallingat
River, and those in Lake Illawarra varying from 2.4 m to 1.2 m.
Secchi depths for Merimbula and Pambula lakes were supplied by
Bega Valley Shire Council (Elgin, 2014a; 2014b), varying from 5.5 m
to 4.6 m in Merimbula Lake, and from 3.1 m to 2.0 m in Pambula

Table 1
Study estuaries in New South Wales, Australia, with locations, water area (km2) and prevalence (% cover) of Zostera muelleri and Posidonia australis.

Estuary Location Water area Z. muelleri prevalence P. australis prevalence

Wallis Lake 152.510 E, 32.174 S 93.82 31.4% 2.6%
Port Stephens 152.190 E, 32.708 S 52.04 8.1% 5.1%
Lake Illawarra 150.873 E, 34.544 S 35.81 22.3% Nil
Merimbula Lake 149.922 E, 36.896 S 4.89 9.8% 23.5%
Pambula Lake 149.916 E, 36.948 S 3.70 9.7% 14.1%
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