
Analyzing point-to-point DDS communication over desktop
virtualization software

Marisol García-Valls ⁎, Pablo Basanta-Val
Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid, Av. de la universidad 30, 28911 Leganés, Madrid, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form 23 June 2016
Accepted 30 June 2016
Available online 8 July 2016

Virtualization technologies introduce additional uncertainty and overhead for distributed applications, that may
challenge their timeliness. The additional software abstraction layers of the virtualization software offer powerful
parallel execution environments but, at the same time, reduce the effective performance as additional software
layers are introduced. This requires somefine tuning of, among others, the communicationmiddleware software.
The different resource management mechanisms of the middleware may collide with the specific algorithms
replicated by the underlying virtualization software. The present work characterises the set of steps of a
publish-subscribe communication middleware in a distributed system, enhancing it to suit the communication
scheme of virtualized remote nodes. The potential communication steps are identified, and the overhead intro-
duced by the execution over the virtualization software is provided by means of a data communication rate
metric; a set of benchmark tests are presented that empirically evaluate the overhead and stability of the most
widely used publish-subscribe (P/S) middleware named DDS (Data Distribution System for real-time systems).
A general purpose cloud computing virtual machine monitor is utilized to identify the side effects and the
drawbacks of the general virtualization technology. Results are obtained on a setting with two different DDS
implementations over a general purpose virtualization software, together with a discussion about the potential
drawbacks of the main communication operations.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Middleware
DDS
Virtualization software
VirtualBox
Performance

1. Introduction

Communication middleware and virtualization technologies are
two main contributions to the development of distributed systems,
easing themaintenance of large systems and enhancing their computa-
tion capacity [46,48]. On the one hand, middleware allows abstracting
the low level details of the networking protocols and of the physical
platforms (e.g. endianness, frame structure, and packaging, among
others); this augments the productivity of systemsdevelopment by eas-
ing the programmability and debugging. More recently, virtualization
technologies have promoted a new technological trend that has fastly
penetrated different domains due to the benefits that it brings about:
a) speed up of the customized system development and deployment
to specific platforms; b) server consolidation and the subsequent sav-
ings on energy; c) reduction of maintenance and deployment costs,
and d) data availability any time anywhere.

Communicationmiddleware and virtualization technology originat-
ed for general purpose distributed applications, so initially in a different

perspective from that of real-time environments where the response
time bounds of the system operation need to be found. As science
evolves and new applications are envisioned and engineered, real-
time applications have progressively approached middleware and
virtualization technologies, facing the problem of temporal predictabil-
ity [5]. However, achieving time-deterministic behavior in the presence
of communication middleware is still an area of research that is
even more challenging over a virtualized platform. As virtualization
technology continues to flood the market, the middleware connecting
application-level logic will run both over virtualization software and
also over bare machines; such heterogeneous settings have the
potential to alter the performance experienced by the middleware
and, subsequently, by applications. These performance variations need
to be analysed in time-sensitive domains such as soft real-time
applications.

For real-time applications, research has primarily focused on
developing virtualization technology that ensures time-deterministic
execution; this is typically done by fine tuning the real-time knobs of
the specific used technology such as KVM [2] or Xen [3]. Nevertheless,
theseworks are silent about the behavior of the distributed applications
and the performance of the communication middleware that can
execute on top of them. The negative and unpredictable consequences
of considering the networked communications and middleware in the

Computer Standards & Interfaces 49 (2017) 11–21

⁎ Corresponding author.
E-mail addresses: mvalls@it.uc3m.es (M. García-Valls), pbasanta@it.uc3m.es

(P. Basanta-Val).

http://dx.doi.org/10.1016/j.csi.2016.06.007
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.06.007&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.06.007
mailto:pbasanta@it.uc3m.es
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.06.007
Unlabelled image
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


distributed applications is not typically addressed in this domain, as
real-time research typically makes heavy assumptions with respect to
the behavior of the network, and the communication middleware that
is used is mainly neglected.

For networked real-time systems, the main focus has been on
eliminating (or minimizing) the sources of unpredictability by direct
programming of tasks in the real-time operating system or directly in
the hardware platform itself and using controlled medium access
protocols to develop real-time networks. However, middleware
has typically been implemented for distributed systems over non
collision-free networks, and using software engineering techniques
that introduce additional software layers aiming at easing program-
mability and interoperability. As a consequence, communications
middleware has appeared as a black box, containing extra code that
is difficult to analyse with sufficient level of detail and guarantees
as generally required by real-time applications.

Distributed real-time applications have incorporated the usage
of middleware since the times of Corba and, precisely, RTCorba.
However, the complexity of that standard and the lack of competing
implementations that would support the complete standard was not a
favorable context to increase the popularity of middleware for real-
time domains. The appearance of the OMG's DDS standard [1] (Data
Distribution Service for Real-Time Systems) that provides asynchronous
interoperability via a data-centric publish-subscribe paradigm has
promoted the usage of communication middleware for distributed soft
real-time applications again. It has become the de facto standard for
some application domains such as DoD projects that mostly have time
requirements or directly fall in the category of real-time systems. One
of the success factors of DDS is that it defines a collection of diverse
QoS parameters that promise tofine-tune the behavior of the communi-
cations. In general, the level of temporal guarantees provided by
different DDS implementations varies depending on different factors
such as the underlying physical deployment, network, and the applica-
tion code. There are not many published independent studies about the
performance achieved by the different implementations, and (up to the
best of our knowledge) there are no studies that analyze its communi-
cation structure in virtualised environments in order to detect the
design bottlenecks of the middleware in relation to cloud computing
technology.

There are different virtualization techniques such as those that use
software containers for operating systems such as Linux (e.g. Docker
[44] or Vagrant [45]) with the goal of avoiding the overhead of starting
and running virtual machines. This technique supports the execution of
independent containers in a sole Linux instance, providing an additional
abstraction layer at system level and using techniques to achieve
isolation of the kernel resources such as cgroups or namespaces.

In this paper, we analyze the behavior of the integration of DDS
middleware over a general purpose virtualization software based on
virtual machines and not on software containers to identify the poten-
tial drawbacks of such an integration with respect to the main
operations involved in the communication. We identify the phases
that need be executed on a bare communication among two partici-
pants, characterising their temporal cost and deriving ametric that indi-
cates the data communication rate by different DDS implementations. It
is not the objective of this contribution to fine tune the used VMM for
real-time applications, but to serve as a baseline to explore the deficien-
cies of the communication structure; determining and fine tuning the
temporal behavior of DDS over a real-time hypervisor is a natural follow
up the presented work.

1.1. Problem description

The execution overheads of communication middleware over a
general purpose virtualized infrastructure are the following: (1) the
additional virtualization software layers; (2) overhead of the

communication middleware abstractions; and (3) implementation op-
timization issues.

The sole execution of a VM in isolation experiences the overhead of
the virtualization layers for different reasons such as the translation of
the physical interrupts and their forwarding as software interrupts to
the above application layers, depending on the virtualization strategy
used. Also, when different VMs are in execution, the experienced over-
head is enhanced by the natural competition for themachine resources.
Thismay affect theuse of visible shared resources (e.g. the samephysical
core or memory capacity) and invisible shared resources (e.g., cache
space, memory bandwidth, etc.), being visible or invisible depending
on the implementation of the host operating system and virtualization
monitor.

The overhead of the communication middleware abstractions ap-
pears as the data messages have to traverse the software layers and
are queued at different levels. This overhead is reflected in the
main statistical metrics (i.e. minimum, average, and maximum re-
sponse times), increasing jitter and overhead. The cost of marshal-
ling and unmarshalling data in the communication is one of the
major penalties, and part of it may be alleviated using virtual ma-
chines that run similar virtualized operating systems and hardware
infrastructures.

In such a scenario, implementation optimisation issues are key to
obtain some performance benefits. However, this can be a very complex
task depending on the particular used combination of middleware,
guest OS, VMM, and host OS, as different inefficiencies may appear
(e.g. unnecessary or/and inefficient copies among middleware buffers,
guest OS, host OS, and VMM buffers).

In the future, virtualized servers will be key in real-time deploy-
ments, but still there is no sufficient confidence on the virtualization
technology apart from some specific ARINC 653 compliant operating
systems that provide isolation through partitions. Therefore, this study
contributes to analyse and identify the key communication steps in a
virtualized environment in order to progressively remote as much
uncertainty as possible from the virtualized distributed communication
schemes. It is not the focus of the work to experiment with the specific
quality of service policies provided by DDS to optimize the networking
level. Instead, it is our goal to assess the performance of a DDS enabled
distributed application in a virtualized setting. This allows analysing
the stability of the interaction between communicating nodes in a soft
real-time domain and to reason about the suitability of deploying
distributed applications based on P/S middleware in a virtualized
machine.

1.2. Contribution

In a previous work [6], we have performed a black box exploratory
performance evaluation on virtualized environments for middleware,
without analysis of the main operations that take place in the commu-
nication. In this paper, we analyse the behavior resulting from the
specific integration of complex and (in principle) independent COTS
to set a starting point to analyze the suitability of themiddleware archi-
tectures and communication process. Significant advances are that we
analyze the internal structure of the middleware, providing a metric
to identify the different performance drawbacks observed. Precisely
we extend our previous work: (1) with a detailed description of the
middleware structure comparing the deployment over bare machine
with the one over a virtualised environment; (2) we elaborate on the
data communication frequency calculating the communication satura-
tion level in this setting, with performance indicators such as the data
communication rate related to the cost of the virtualisation and in rela-
tion to the additional middleware operations; and (3) we provide a
comparison of both execution types in bare machine and virtualised
over general purpose VMMs, extending the set of tests to determine
the invocation frequencies that are allowed.

12 M. García-Valls, P. Basanta-Val / Computer Standards & Interfaces 49 (2017) 11–21



Download English Version:

https://daneshyari.com/en/article/453967

Download Persian Version:

https://daneshyari.com/article/453967

Daneshyari.com

https://daneshyari.com/en/article/453967
https://daneshyari.com/article/453967
https://daneshyari.com

