
An extensible pattern-based library and taxonomy of security threats for
distributed systems

Anton V. Uzunov a,⁎, Eduardo B. Fernandez b,1

a School of Computer Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
b Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, United States

a b s t r a c ta r t i c l e i n f o

Available online 30 December 2013

Keywords:
Distributed systems security attacks
Threat patterns
Threat modeling
Pattern-based security threat taxonomy
Peer-to-peer system-specific threats

Security is one of themost essential quality attributes of distributed systems, which often operate over untrusted
networks such as the Internet. To incorporate security features during the development of a distributed system
requires a sound analysis of potential attacks or threats in various contexts, a process that is often termed "threat
modeling". To reduce the level of security expertise required, threatmodeling can be supported by threat libraries
(structured or unstructured lists of threats), which have been found particularly effective in industry scenarios;
or attack taxonomies, which offer a classification scheme to help developers find relevant attacks more easily. In
this paper we combine the values of threat libraries and taxonomies, and propose an extensible, two-level "pat-
tern-based taxonomy" for (general) distributed systems. The taxonomy is based on the novel concept of a threat
pattern, which can be customized and instantiated in different architectural contexts to define specific threats to
a system. This allows developers to quickly consider a range of relevant threats in various architectural contexts
as befits a threat library, increasing the efficacy of, and reducing the expertise required for, threat modeling. The
taxonomy aims to classify a wide variety of more abstract, system- and technology-independent threats, which
keeps the number of threats requiring consideration manageable, increases the taxonomy's applicability, and
makes it both more practical and more useful for security novices and experts alike. After describing the taxon-
omy which applies to distributed systems generally, we propose a simple and effective method to construct
pattern-based threat taxonomies for more specific system types and/or technology contexts by specializing one
or more threat patterns. This allows for the creation of a single application-specific taxonomy. We demonstrate
our approach to specialization by constructing a threat taxonomy for peer-to-peer systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade distribution has become one of the main charac-
teristic features of software systems, prompted in large measure by the
expanding needs of businesses, scientific organizations and individuals
who wish to collaborate across geographical distances, share data and
resources or simply performcomputations remotely. To support such fea-
tures, however, the corresponding systems must often span untrusted
networks – with the Internet being a prime example – making them
susceptible to a wide range of attacks both at the individual host and net-
work levels. Security attributes, therefore, are among the most important
quality attributes for distributed systems operating in untrusted environ-
ments, and have consequently received much attention over the years
[1–4]. To incorporate these attributes during the development of a

distributed system, whether using a systematic approach (i.e. a method-
ology [5]) or in some ad-hoc fashion, requires the introduction of a num-
ber of security measures, which, in turn, are the result of analyzing the
potential attacks or threats to a system in a given context. This analysis
process is often termed threat modeling [6,7], and is performed during
the requirements analysis stage, the design stage, or both. In all cases
the process generally requires developers to conjecture possible attacks
to different assets or parts of a system, to assess their risk and likelihood,
and to determine at a high level how they could potentially bemitigated.

Conducting threat modeling usually requires a sound knowledge of a
system's technical domain and sufficient security expertise to consider
both generic and specific attacks for various system- and/or technology-
specific contexts. These security knowledge requirements can leave
most “off-the-street” developers estranged (cf. [8]), with the net result
that threat modeling is not performed or, when performed, is performed
sub-optimally or with significant effort involved (cf. [9]). As Dhillon [9]
points out, a threat library that collects common threats to a given
system-/technology-specific context can greatly enhance the efficacy of
the threatmodeling process andhence put it back, so to speak, on the pro-
ject map. A threat library such as the one used at EMC [9], or even by

Computer Standards & Interfaces 36 (2014) 734–747

⁎ Corresponding author.
E-mail addresses: anton.uzunov@adelaide.edu.au (A.V. Uzunov), ed@cse.fau.edu

(E.B. Fernandez).
1 Currently visiting professor at Universidad Técnica Federico Santa María, Valparaíso,

Chile.

0920-5489/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csi.2013.12.008

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.12.008&domain=pdf
http://dx.doi.org/10.1016/j.csi.2013.12.008
mailto:anton.uzunov@adelaide.edu.au
mailto:ed@cse.fau.edu
http://dx.doi.org/10.1016/j.csi.2013.12.008
http://www.sciencedirect.com/science/journal/09205489


Microsoft for web applications [10], can also go a long way in educating
developers about common threats, rendering future threat modeling
tasks easier.

Despite their value, threat libraries encompass only a set of spe-
cific, pre-defined threats, making the discovery of new threats or
the same threats in different architectural contexts more difficult.
In this respect the use of threat or attack taxonomies such as
Microsoft's STRIDE [7] (an acronym for Spoofing, Tampering, Repu-
diation, Information disclosure, Denial of service and Escalation of
privileges), can be more useful, since they allow an arbitrary number
of threats to be considered that fall within one or more categories.
However, most taxonomies are either at a very high level of abstraction
and hence require significant security expertise to identify appropriate
threats (cf. [9] for STRIDE), or, in general, are simply not appropriate
for threat modeling or indeed any form of security assessment in the
first place [11]. Those that are appropriate for security assessment and
at the right level of abstraction are not necessarily useful during the ear-
lier stages of the SDLC (e.g. they consider post-design vulnerabilities), do
not provide appropriate categories for threat modeling, or are relevant
only to specific contexts (see [11] for a broad overview and references).
Finally, the taxonomies referred to above – excepting STRIDE – are for
vulnerabilities and attacks, not threats, which is a subtle but important
difference (e.g. unsafe code execution is a threat realized by multiple at-
tacks in different contexts).

In this paper we combine the values of threat libraries and threat tax-
onomies andproposewhatwe term(with some risk of using terminology
loosely) a pattern-based threat taxonomy for (general) distributed sys-
tems. In our approach, each threat is encapsulated in a new type of pat-
tern (see [12]) called a threat pattern, which can be customized and
instantiated in particular architectural contexts to define specific threats
to a system. This allows developers to quickly consider a range of relevant
threats in various architectural contexts as befits a threat library, increas-
ing the efficacy of, and reducing the expertise required for, threat model-
ing. Threat patterns can also be related to correspondingmisuse patterns
[13], which can detail the attacks realizing a particular threat and educate
developers. The (base) taxonomy aims to classify a wide variety of more
abstract, system- and technology-independent threats, which keeps the
number of threats requiring consideration during a threat modeling pro-
cess manageable, increases the taxonomy's applicability, and makes it
both more practical and more useful for security novices and experts
alike. Employing patterns also helps to establish a common domain
vocabulary, promoting the use of consistent threat names and concepts
by developers in their everyday security-related work.

Despite the breadth of our taxonomy, each distributed system type,
and even the technologies employed to realize a system, can create a va-
riety of specific threats, which may not be explicitly present among our
proposed threat patterns, or, more precisely, may not be present at the
base level of abstraction. To solve this problem, we propose a simple
and effective method to extend threat taxonomies by specializing one
or more threat patterns to new system-/technology-specific contexts.
This allows for the construction of application-specific taxonomies by
taking the union of the set of relevant system-/technology-specific tax-
onomies, which in turn allows developers to consider the widest range
of applicable threats in any given architectural context. We demonstrate
our approach to specialization by constructing a threat taxonomy for
peer-to-peer systems.

The latter example also demonstrates the purely “taxonomic” fea-
ture of our proposal,where each pattern in the taxonomy for distributed
systems acts as a “category” for more specialized patterns and pattern
instances. This feature allows known threats to be classified in a way
that has value during system development, i.e. specific attacks such
as CodeRed worm, SQL slammer exploit and, indeed, thousands of
others, can be seen more abstractly as collections of individual threats
(scanning, probing, injection, etc.), which require mitigation irrelevant
of whether they are launched against a system automatically (malicious
software) or manually (malicious hackers).

The rest of this paper is structured as follows. In Section 2 we intro-
duce the concept of a threat pattern, relate it to the existing misuse pat-
terns of Fernandez and colleagues [13], and discuss threat taxonomies
(Section 2.1); we also define the architectural contexts of the threat pat-
terns (Section 2.2). In Section 3 we present our (base) threat taxonomy
for distributed systems and discuss pattern specialization and instantia-
tion. In Section 4we specialize a number of (base) threat patterns to con-
struct a taxonomy for peer-to-peer systems. In Section 5 we consider
related work; and in Section 6 we conclude and discuss future research
directions.

2. Background and definitions

In this section we provide the necessary background for the rest
of the paper by defining threat patterns and pattern-based threat taxon-
omies (Section 2.1) as well as architectural contexts (Section 2.2).

2.1. Threat patterns and pattern-based threat taxonomies

The concept of a pattern in software engineering has received
much attention over the last 15 years, both in academia and the in-
dustry, owed in large measure to the pioneering work of Gamma
and colleagues in the field of object-oriented design [14]. Patterns
have been found useful in diverse areas such as software architec-
ture, fault-tolerance, parallel programming and security, with each
area boasting a sizable catalog of patterns available for developers
to use. Within security in particular, solutions in the form of security
patterns have appeared steadily in the literature to cover most major
security-related concerns (see [15]). The pattern concept has also
been found useful for the reverse side of the security solution land-
scape, namely, for security attacks, in the form of attack patterns
[16] and misuse patterns [13,17,18]. Attack patterns capture the
steps required to perform a specific security attack (exploit) in a ge-
neric fashion; misuse patterns, on the other hand, detail a complex
attack on a system related to particular architectural components,
capturing the structure and dynamics of the attack, forensic informa-
tion and much else besides. Misuse patterns in particular, like secu-
rity patterns, are full software patterns, which capture a set of
principal design decisions [19] or define constraints determining a
family of architectures that satisfy them [20]. In the case of security
patterns this implies architectural impact [15], and in the case of
misuse patterns, a strong architectural relation.

Not all software patterns, however, have direct architectural impact,
or concrete architectural relation. From a more abstract point of view, a
pattern can be seen simply as “the abstraction from a concrete form
which keeps recurring in specific non-arbitrary contexts” [12]. One
can thus define a type of software pattern that has amore generic archi-
tectural relation conforming to the latter characterization, which we
term an abstract software pattern. The security solution analog of this
general type of pattern was proposed by Fernandez et al. [21] in the
form of abstract security patterns. In this section, we define the threat
analog: threat patterns, which are the core constituents of our threat
taxonomy.

A conceptual model relating the various patterns for security
mentioned thus far, as well as many of the main concepts contained
in the rest of this paper, can be seen in Fig. 1, with the more impor-
tant elements appearing in different colors or, if viewed without
color, different shades of gray (purely to differentiate them from
other elements and from each other). For associations that appear
as being (solely) vertically aligned in the figure, an arrow to the left
implies they should be read “upwards” (e.g. each security patterns
addresses one or several specific security policies), and an arrow to
the right implies they should be read “downwards” (e.g. each general
threat pattern is for a given general architectural context). In what
follows, words appearing in italic font refer to (class) elements in
the model.

735A.V. Uzunov, E.B. Fernandez / Computer Standards & Interfaces 36 (2014) 734–747



Download English Version:

https://daneshyari.com/en/article/454146

Download Persian Version:

https://daneshyari.com/article/454146

Daneshyari.com

https://daneshyari.com/en/article/454146
https://daneshyari.com/article/454146
https://daneshyari.com

