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a  b  s  t  r  a  c  t

Somatic  growth  is critical  to the  biology  of individuals  and  to  population  dynamics.  Variability  in  size
at  age  can  often  be  attributed  to the  existence  of  distinct  groups,  or  growth  morphs,  that  differ  in  their
growth  trajectories.  We  develop  a framework  for identifying  multiple  growth  morphs  from  mixture  data,
with utility  for  describing  somatic  growth  at the  population  level  as well  as for  classifying  individuals
into  their  most  likely  groups.  For  illustration,  growth  trajectories  are  modeled  using  the  von  Bertalanffy
function,  but  the  framework  is  general  enough  to  accommodate  any  suitable  growth  function.  After
describing  the  framework,  we  demonstrate  proof  of  concept  using  a  simulation  study,  and  then  apply  the
proposed  method  to size-at-age  data  for Cubera  snapper  Lutjanus  cyanopterus.  In  addition,  we  compare
several  Bayesian  model  selection  criteria  for inferring  the  unknown,  underlying  number  of  morphs.

Published by Elsevier  B.V.

1. Introduction

Understanding somatic growth is fundamental to fishery
science. Growth is linked through life-history evolution to repro-
ductive output and natural mortality (Charnov et al., 2013), and
these processes are primary drivers of population dynamics. In fish
stock assessments, growth models are used to convert between
numbers and biomass (in the population and in the catches), inter-
acting with estimation of recruitment, natural mortality, fishing
mortality, and selectivity of the fishing or survey gear. Because
of their importance to fishery science and consequently resource
management, growth models have received much attention in the
primary literature (e.g., Maunder et al., 2016).

Numerous models have been proposed to describe fish growth
(Quinn and Deriso, 1999; Katsanevakis and Maravelias, 2008). By
far, the most widely applied model is attributed to von Bertalanffy
(Von Bertalanffy, 1938). The von Bertalanffy model gives rise to an
increasing length-at-age, but decelerating growth rate with age,
and it fits most populations well, especially when the youngest
ages are excluded (Chen et al., 1992; Lester et al., 2004). Alter-
native models generally lead to a similar growth pattern, though
variations exist to account for such influences as life-history stages,
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seasonal variation, environmental forcing, and density dependence
(Lorenzen, 2016; Matthias et al., 2016).

Somatic growth varies among individuals because of genetic,
behavioral, ecological, and environmental diversity. In some cases,
sizes of individuals may  deviate around a single growth trajectory,
as is commonly assumed. In other cases, variability in size or length
data may  be described best using multiple growth phenotypes, or,
morphs. Throughout this paper, we use the term “growth morph”
to refer to a group of individuals that share an expected growth
trajectory.

When fitting growth models to length-at-age data, the typical
assumption is that individual fish (observations) originate from the
same statistical population. If multiple growth curves are consid-
ered, the data are usually first classified into different groups and
distinct curves are then fit to each of these subpopulations. For
example, if a biological population were expected to have sexu-
ally dimorphic growth, separate growth curves would be fit to data
from males and females. Then, the two  curves could be compared
to make inference about dimorphic growth.

Unfortunately, it is not always possible to classify the data a
priori into distinct subsets. In the preceding example, the sex of
some or all individuals may  be unknown when fish are gutted at
sea (gonads removed), a common occurrence with fishery depen-
dent data. In some cases, assigning labels to groups a priori may
not be desirable or even possible, but we  are nonetheless inter-
ested in whether there is evidence for multiple morphs. If so, we
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may  want to estimate the relative abundance of each group in the
data set or population, as well as estimate group-specific growth
trajectories for use in stock assessment models (Goodyear, 1984;
Punt et al., 2002; Taylor and Methot, 2013). In other applications,
we may  be more interested in classifying individual fish into their
respective groups. Whether focused at the population or individual
level, mixture modeling can be useful for analyzing data composed
of multiple groups, particularly when the group identity of some or
all individuals is unknown.

Mixture modeling is well established in the fields of statistics
(McLachlan and Peel, 2000; Gelman et al., 2013) and machine learn-
ing, where it is called “unsupervised classification” (Hastie et al.,
2009). Mixture models have also proven useful in a range of eco-
logical applications − examples include modeling heterogeneity
in mark-recapture data (Pledger et al., 2010), temporal variability
in animal movement dynamics (Morales et al., 2004), and varia-
tion in ungulate life-history parameters (Hamel et al., 2016), as
well as decomposing length frequencies into age or stage classes
(Sweeney et al., 2015). The latter can be accomplished in a max-
imum likelihood framework using publically available software
such as the R package mixdist (Macdonald and Du, 2012). To our
knowledge, mixture models have not previously been applied to
somatic growth data collected from fish populations.

The goals of this paper are twofold. First, we show how mixture
models can be adapted to account for heterogeneity in group-
related growth. Second, we examine ways to identify objectively
how many morphs contribute to the population. The method we
propose has utility for quantifying growth trajectories of each of
the underlying morphs, i.e., the mixture components. It has fur-
ther utility for classifying individual observations (fish) into their
most likely components (e.g., unclassified individuals of a particular
length as either male or female). Uncertainty in these classifications
can be quantified, allowing for propagation of error to any subse-
quent analyses. After describing the method, we demonstrate its
use on simulated data and through a case study on Cubera snapper
Lutjanus cyanopterus.

2. Methods

2.1. Mixture model framework

For fitting length-at-age data, we took a mixture modeling
approach implemented in a Bayesian framework (Gelman et al.,
2013). Here, the observed lengths (y = y1, . . .,  yn) were considered
to be generated by a mixture of M components (m = 1, . . .,  M),  the
growth morphs. We  modeled the expected length (L̄a,m) at age (a)
of each morph using the von Bertalanffy equation,

L̄a,m = L∞,m (1 − e−km(a−a0,m)) (1)

where L∞,m is the asymptotic expected length of morph m,  km is
the growth coefficient, and a0,m is the theoretical age at which
length is zero. We chose the von Bertalanffy equation because of its
widespread popularity in fishery science, but note that the general
modeling approach can accommodate any suitable growth func-
tion.

We used a latent (unobserved) variable, zi, assumed to follow a
multinomial distribution, to capture the group (i.e., morph) mem-
bership of fish i,

zi∼multinomial (�1, . . .,  �M) (2)

Values of � represent the probabilities of membership in each
group and, for Eq. (2) to be a valid probability distribution func-
tion, they must satisfy the condition

∑M
m=1�m = 1. We  assumed

that the �m’s follow a Dirichlet distribution. This was accomplished
implicitly by specifying a set of M hyperprior random variables,

˛m∼gamma (1, 1), followed by the relationship, �m = ˛m/

M∑

j=1

˛j

(Kéry and Schaub, 2012). More generally, log(˛m) could be modeled
as a function of explanatory variables in a multinomial regres-
sion framework, thus allowing the classifications to be informed
by additional covariate data, if available.

We  assumed that variability of length-at-age is described by a
morph-specific normal distribution,

yi|�m, zi∼N
(

L̄ai,m, �2
m

)
(3)

where �m is the set of four parameters that fully describe each
morph, �m =

(
L∞,m, km, a0,m, �m

)
. The assumption of normality is

common (Francis, 2016), and we  chose it here for the purpose of
illustration. However, the approach could easily be adapted to other
statistical distributions.

We applied uniform prior distributions on each parameter. For
any given application, meaningful bounds on prior distributions
will depend on the data set in hand. However, one caveat regard-
ing mixture models is that the zi might not be identifiable without
informative priors or constraints. Indeed, all mixture models are
nonidentifiable in the sense that the mixture distribution is unaf-
fected by permutations in the group labels (Gelman et al., 2013). To
avoid this ambiguity, we  applied the following priors on asymptotic
expected length,

L∞,1∼U (min,  max) , L∞,2∼U
(

0, L∞,1
)

, ..., L∞,M∼U
(

0, L∞,M−1
)

(4)

which is equivalent to the restriction that L∞,1 > L∞,2 > ... > L∞,M .
We define application-specific values of min and max  in the Simu-
lated data and Cubera snapper case study sections below, as well as
specify prior distributions for other parameters of �m.

To implement the model, we used JAGS version 4.2.0 (Plummer,
2003), a program for Bayesian analysis utilizing Markov Chain
Monte Carlo (MCMC) simulation. It was  run in R version 3.2.5 (R
Development Core and Team, 2016) via the R package R2jags (Su
and Yajima, 2015). We  ran three independent Markov chains, each
for 500,000 iterations, and each initialized with over-dispersed
starting values as judged by viewing the trace plots. Posterior distri-
butions were computed after a burn-in period of 100,000 iterations
to avoid any influence of starting values. We  thinned the resulting
chains by keeping every tenth iteration, because of data storage
limits (Link and Eaton, 2012). Convergence was assessed through
visual inspection of trace, density, and autocorrelation plots, and
by examining the Brooks-Gelman-Rubin statistic for convergence
toward 1 (Brooks and Gelman, 1998).

2.2. Classification of observations

During each MCMC  iteration, each fish is assigned to a single
morph. Across iterations, however, morph assignments may  differ.
We used the mode of the posterior distribution (i.e., the morph
assigned most frequently) to classify each fish.

2.3. Number of morphs and model selection

In some applications, M would be known a priori, for example
in the case of investigating sexually dimorphic growth where M =
2. In other applications, the number of morphs may  be unknown.
In general, determining the number of components (morphs) in
mixture modeling is a difficult challenge (Gelman et al., 2013), and
one method for doing so is model selection. For our applications,
we fitted the model for multiple values of M,  and then compared
results graphically and through model selection criteria.

Numerous model selection criteria have been proposed for
Bayesian applications, with no general consensus view on which
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