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a b s t r a c t 

Discontinuous Galerkin methods offer a promising methodology for treating nearly hyperbolic systems 

such as dispersion-modified shallow water equations in complicated basins. Use of straight-edged trian- 

gular elements can lead to the generation of spurious eddies when wave fronts propagate around sharp, 

re-entrant obstacles such as headlands. While these eddies may be removed by adding strong artificial 

dissipation (e.g., eddy viscosity), for nearly inviscid simulations that focus on wave phenomena this ap- 

proach is not reasonable. We demonstrate that the moderate order Discontinuous Galerkin methodology 

may be extended to curved triangular elements provided that the integral formulations are computed 

with high-order quadrature and cubature rules. Simulations with the new technique do not exhibit spu- 

rious eddy generation in idealized complex domains or real-world basins as exemplified by Pinehurst 

Lake, Alberta, Canada. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Understanding the physical processes in lakes is of fundamen- 

tal importance in a vast array of applications, ranging from water 

quality management to bio-geochemical cycling. Numerical mod- 

elling is a very valuable tool for improving and extending the cur- 

rent understanding of lake dynamics. A key challenge in the nu- 

merical modelling of lakes lies with representing the inherently 

complex geometry of coastlines. The irregularity of coastlines of- 

ten motivates the modeller to choose a low-order method with 

a compact stencil of grid-points to approximate derivatives. Al- 

though high-order spectral and pseudospectral methods may thus 

appear inappropriate for modelling of real-world lakes due to their 

global stencil, these methods are quite powerful in simple geome- 

tries that represent idealized basins. The solution of a weakly non- 

hydrostatic single-layer model in periodic and annular domains 

with the high-order Fourier and Chebyshev pseudospectral meth- 

ods has been recently explored by Steinmoeller et al. (2012, 2013) . 

The methods developed in these works allow for the numerical 

modeling of circular or channel–like basins. While circular basins 

and channel–like basins may seem to be esoteric cases, they form 

a well studied class of problems in physical limnology dating back 

over a century ( Thomson, 1872; Stocker and Imberger, 2003 ). High 

order numerical methods for such basins allow the robustness of 
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classical solutions to be explored without the uncertainty associ- 

ated with the inherent dissipation in many low order methods. 

This, in turn, allows for a rational set of hypotheses to be formu- 

lated for subsequent testing against field data. Regardless of these 

advances, the need for high-order methods that can capture more 

general geometries has been clear for some time and specific rea- 

sons for this need were identified in Steinmoeller et al. (2013) . 

Since a lake’s coastal boundary generally specifies a physical do- 

main with complex/irregular boundaries, the pseudospectral meth- 

ods presented in Steinmoeller et al. (2012, 2013) are not sufficient 

for modelling real-world lakes. To represent more general geome- 

tries, we turn to the Discontinuous Galerkin finite element method 

(DG-FEM) as a high-order alternative to the low-order finite vol- 

ume and finite element methods that are commonly used for irreg- 

ular geometries. The results presented in this manuscript typically 

use local polynomial orders between N = 4 and 8. The methods are 

thus high-order in contrast to traditional finite element methods 

that typically use piece-wise linear or quadratic basis functions. 

See for instance Walkley (1999) , who solved a Boussinesq-type 

system with a low-order finite element method (FEM). Low-order 

numerical work with Boussinesq-type systems applied in process 

studies has been carried out by Tomasson and Melville (1992) , 

Brandt et al. (1997) and de la Fuente et al. (2008) , for example. 

It is worth stressing that the high-order DG-FEM is not the 

same as the spectral element method (SEM) (see Karniadakis and 

Sherwin, 2005 ) that represents the high-order extension of the 

traditional FEM. Both FEM and SEM are continuous Galkerin for- 
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mulations which require C 0 continuity at element interfaces. Al- 

though DG-FEM and SEM both use a high-order orthogonal poly- 

nomial basis, the DG-FEM only imposes continuity in a weak sense 

through the specification of a numerical flux function at element 

edges in order to allow for stable advection schemes ( Cockburn 

and Shu, 1989; Cockburn et al., 1990; Hesthaven and Warburton, 

2008 ). The requirement of C 0 continuity in the SEM means that 

the method is not ideal for advection problems since an upwind- 

type scheme cannot be formulated to account for the preferred di- 

rection of propagation of information ( Hesthaven and Warburton, 

2008 ). In addition, modal filtering is known to have no effect at 

element interfaces where the basis polynomials are most oscilla- 

tory ( Hesthaven et al., 2007 ). These shortcomings can lead to sit- 

uations where Gibbs oscillations are trapped at element interfaces, 

as has been illustrated for the spectral element ocean model by 

Levin et al. (2006) . However, it should be noted that modern treat- 

ments of FEM/SEM seek to overcome this shortcoming for advec- 

tive problems by considering stabilization techniques such as the 

SUPG (streamline upwind/Petrov–Galerkin) method ( Hughes, 1987 ) 

as well as the class of entropy-based viscosity methods ( Nazarov 

et al., 2011 ). An alternative to the purely discontinuous approach 

has been recently proposed in the form of the hybridizable dis- 

continuous Galerkin method that imposes strong continuity only in 

the edge-normal flux component ( Rhebergen and Cockburn, 2012 ). 

The specification of an upwind-biased numerical flux is usually 

furnished through the well-established theory of approximate Rie- 

mann solvers that are commonly used in the formulation of finite 

volume methods in order to propagate information between finite 

volume cells (see Toro, 1999 for an overview). It is for this rea- 

son that DG-FEM with piece-wise constant basis functions (order 

N = 0 ) is identical to the low-order finite volume method, as ex- 

plained by Hesthaven and Warburton (2008) . 

In the following sections, we follow the techniques and de- 

velopments for nodal DG-FEM presented by Hesthaven and War- 

burton (2008) , building upon their techniques as necessary. We 

briefly explain the basic nodal DG-FEM formulation as the spa- 

tial discretization method for both hyperbolic and elliptic systems 

and the corresponding reduction to local operators in the context 

of a one-layer dispersive shallow water model. Following this, a 

comparison with the pseudospectral methods of Steinmoeller et al. 

(2012, 2013) is carried out as a means of validating the numerical 

scheme presented here and illustrating the resolution characteris- 

tics of the DG-FEM at varying polynomial orders. The necessity of 

curvilinear elements for general situations is illustrated by the for- 

mation of singular/spurious flow features that emerge because of 

the piece-wise linear representation of the boundary. It is then ex- 

plained how the nodal DG-FEM method should be augmented with 

high-order cubature and quadrature integration rules to deal with 

the non-constant mapping Jacobians introduced by curvilinear ele- 

ments. 

In Section 2 we describe the basic numerical methods. Be- 

cause standard techniques are used, many of the details are left 

to appendices. The modifications based on the use of curvilin- 

ear elements are described in Section 3 . Results are presented in 

Section 4 which includes simulations on internal waves in a real- 

world lake: Pinehurst Lake, Alberta, Canada. 

2. Methods 

2.1. Governing equations 

The governing equations for a single-layer reduced gravity 

model with non-hydrostatic corrections to the hydrostatic pressure 

( de la Fuente et al., 2008; Steinmoeller et al., 2012, 2013 ) are 

∂h 
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where u (x, y, t) = (u (x, y, t) , v (x, y, t)) is the velocity field, 

h (x, y, t) = H(x, y ) + η(x, y, t) is the total depth of the fluid 

below the pycnocline with H representing the undisturbed depth 

below the pycnocline, and η is the interfacial displacement from 

the undisturbed state. The constants g ′ and f are the reduced 

gravitational acceleration and the Coriolis frequency, respec- 

tively. These equations differ from the traditional hyperbolic 

shallow water model through the addition of the dispersive terms 
H 2 

6 ∇(∇ · (u h ) t ) . The above system was developed for surface 

waves by Peregrine (1967) and used by Brandt et al. (1997) in 

their study of internal waves in the Strait of Messina. The model 

is for a thin layer of finite thickness below an infinitely deep layer 

and as such is only valid when the metalimnion is close to the 

bottom – a situation that occurs in the late summer, early autumn 

in many temperate lakes. 

An efficient scheme for evolving the dispersive terms can be ob- 

tained by introducing the scalar auxiliary variable 

z = ∇ · (u h ) t , (4) 

in order to reduce the momentum Eqs. (2) and (3) to a hyperbolic 

problem of the shallow water type plus the elliptic problem 

∇ ·
(

H 

2 

6 

∇z 

)
− z = −∇ · a , (5) 

that is referred to as a wave continuity equation by Eskilsson and 

Sherwin (2005) . Here 

a = 

(
−∇ · ( (uh ) u ) − ghηx + f v h 

−∇ · ( (v h ) u ) − ghηy − f uh 

)
. (6) 

We have neglected bottom and surface stresses in Eqs. (1) –(3) 

since their inclusion into the numerical scheme is conceptually 

easy and contributes little to the discussion. We have also chosen 

to focus on the case of a single fluid layer of constant density, since 

the inclusion of multiple layers adds considerable complexity to 

numerical formulations that rely on approximate solutions to the 

corresponding nonlinear Riemann problem. See Mandli (2011) for 

a discussion on the two-layer Riemann problem in the context of 

the finite volume method. 

2.2. Time-stepping technique 

The time-stepping technique applied to the DG-FEM discretized 

version of the one-layer model closely follows the ‘scalar approach’ 

used for the pseudospectral discretization in Steinmoeller et al. 

(2012, 2013) and for the DG-FEM method in Eskilsson and Sherwin 

(2005) where splitting is applied such that advective and source 

terms are time-stepped first, followed by the dispersive terms. As 

in the works mentioned above, the time-stepping approach relies 

heavily on the ‘method of lines’ (see Leveque, 2007 ) where tem- 

poral and spatial discretizations are treated completely separately 

and a layer of abstraction may exist between these two discretiza- 

tions. 

Neglecting the dispersive terms for the time-being since they 

are not a part of the first splitting step, the method of lines 

can be applied by noticing that once the DG-FEM integral form 
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