
BrowStEx: A tool to aggregate browser storage artifacts for
forensic analysis

Abner Mendoza a, Avinash Kumar b, David Midcap b, Hyuk Cho b,
Cihan Varol b, *

a Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
b Department of Computer Science, Sam Houston State University, Huntsville, TX, USA

a r t i c l e i n f o

Article history:
Received 7 November 2014
Received in revised form 25 July 2015
Accepted 1 August 2015
Available online 28 August 2015

Keywords:
HTML5
Local storage
Persistent storage
Web browser forensics
Web storage

a b s t r a c t

Web storage or browser storage, a new client-side data storage feature, was recommended
as a part of the HTML5 specifications and now widely adopted by major web browser
vendors. Web storage with native browser support has changed the paradigm of web
application development unprecedentedly because persistent data storage with increased
data size can be realized on the client. Web storage is poised to quickly become an area of
particular interest for forensic investigators due to the potential to discover critical in-
formation from web browser artifacts at client side. However, the literature work on web
browser forensics has traditionally focused on browsing history, browser cache, and cookie
files (Oh et al., 2011). Therefore, we first discuss the prevalence of web storage imple-
mentation in widely used websites. Then, we compare and contrast the web storage
technology currently implemented in the five major web browsers, Google Chrome,
Internet Explorer, Mozilla Firefox, Opera, and Apple's Safari. Moreover, in order to provide
more insights into web storage and enable unified forensic analysis, a proof-of-concept
tool, named as BrowStEx (Browser Storage Extractor), is described with implementation
details. The commonalities, differences, and the proof-of-concept tool discussed in this
paper can be useful in developing advanced forensic tools that can extract browser storage
artifacts.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

With the increasing reliance on the web to sustain a
modern lifestyle, a wealth of information can be harvested
by analyzing a user's web browsing activities. Indeed, the
bulk of a user's interactions with end-user workstations
today is related to Internet communications (Altheide and
Carvey, 2011). Accordingly, web browser forensics is fast
becoming an important investigation topic within the
computer forensics field. As web technologies evolve and
generate explosive amounts of data, the methods and tools

for extracting useful information need to properly handle
the volume, the velocity, and the variety of data accord-
ingly. Computing devices are becoming more cloud-based,
with requirements to work seamlessly with and without an
Internet connection; thus, web developers have to cope
with this paradigm shift by utilizing HTML5 (HyperText
Markup Language 5) APIs (Application Programming In-
terfaces) that support persistent data storage even when
devices are offline. The most popular of these persistent
data storage mechanisms is a new HTML5 API known as
Web storage, sometimes also referred to as Browser Stor-
age, HTML5 Storage, Local Storage, Offline Storage, or DOM
(Document Object Model) Storage (Laine, 2012). For con-
sistency, we refer to these collectively as Web storage in
this paper. Web storage is a browser-based API bundled in

* Corresponding author.
E-mail address: cvarol@shsu.edu (C. Varol).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2015.08.001
1742-2876/© 2015 Elsevier Ltd. All rights reserved.

Digital Investigation 14 (2015) 63e75

mailto:cvarol@shsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.08.001&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.08.001
http://dx.doi.org/10.1016/j.diin.2015.08.001
http://dx.doi.org/10.1016/j.diin.2015.08.001


HTML5 specifications that allow persistent client-side
storage for web applications. As major web browser ven-
dors adopted this new storagemechanism, developers have
realized the benefits of being able to store persistent data
on the client side. This new mechanism for client side data
storage is appealing not only because it is natively sup-
ported by browsers, but also because it offers much larger
storage capacity than that was available with older mech-
anisms such as cookies. Additionally, unlike cookies, web
storage data does not get transmitted with each request to
and from a web server, thereby reducing the bandwidth
overhead. Despite the increased use of web storage among
the popular websites today, to the best of our knowledge,
there is almost no detailed discussion on this newly
adopted technology in browser forensic investigation
literature. Therefore, this paper intends to discuss the
prevalence of web storage implementation in current
major web browsers, emphasize the high potential of
finding information on client-side web storage data
generated by multiple web browsers, and guiding in
developing web storage forensics tools.

We first compare client storage mechanisms and pro-
vide the characteristics of HTML5 web storage. Then we
provide an evidence of how prevalently the web storage
technology has been adopted by web browsers. Particu-
larly, we compare and contrast the details and nuances of
web storage implementation among the five major web
browsers, Chrome, Explorer, Firefox, Opera, and Safari.
Furthermore, in order to provide more insights and guides
in developing web storage forensic tools, a proof-of-
concept tool, named as BrowStEx (Browser Storage
Extractor), is described. BrowStEx can extract the data ar-
tifacts from related web storage files and present them in
an aggregated view for unified analyses.

The remainder of the paper is organized as follows. In
Section Prior work, we discuss related work about web
storage. In Sections Persistent storage and HTML5 web
storage, the details of persistent storage and HTML5
client-side storage in different browsers are summarized.
The findings on web storage implementation and stored
data are discussed in Section Web storage implementation
and utilization. In Section BrowStEx: design and
implementation, the BrowStEx application is introduced.
Finally, we conclude the paper with summary and brief
discussion on future research direction in Section 7.

Prior work

Other than the W3C (World Wide Web Consortium)
draft specification guidance (W3C, 2013), browser vendors
have not disclosed much details regarding the imple-
mentation of web storage technology in their respective
browsers. Moreover, there seems to be no comprehensive
research that compares and contrasts details on how web
storage is implemented and incorporated among different
browsers. Prior research work related to HTML5 web stor-
age has mostly focused on the ways in which web storage
may be used, such as the variety of stored data, and spe-
cifically, the issues surrounding security and privacy.

West and Pulimood (2012) provided an analysis of the
web storage specification and its usage in the context of

privacy and security issues. The authors implemented a
simple budget management web application, which uses
web storage to store data locally on the client machine and
periodically synchronizes the data with the server. Their
experimental study provides an insight into how improper
usage of web storage could expose sensitive data to other
users using the same web application on the same system,
such as users in an Internet cafe. The study exemplifies a
potential security breach of personal data and also hints at
an opportunity in the context of digital forensics. For
example, if a website records search queries, browsing
history, and other user information into web storage, it
could provide invaluable information in a digital investi-
gation, especially if a user has attempted to hide his/her
browsing activities by clearing the browsing history simply
using the browser-provided history deletion functionality.
In such a case, the web storage contents would be a better
target for investigation.

Silo (Mickens, 2010) leveraged web storage to cache
JavaScript and CSS (Cascading Style Sheets) chunks on the
client side, thereby improving the performance of web
applications by requiring less data transmission between
the browser and the remote web server. Bogaard et al.
(2011) explored how malicious web developers could
exploit web storage and use it as a covert channel to
distribute sensitive information across the Internet and
also to retrieve it at a later time. The premise of this tech-
nique is that if a malicious user does not want to store in-
formation locally in their own machine or in a server, they
can store it in unsuspecting client machines leaving no
evidence of the data in their own machine. The authors
built a web application that would break a file into 26
portions and distribute each portion to a large number of
clients on the Internet that visit the web application. The
goal of the experiment was to show that the file could be
reconstructed eventually and to investigate how many
copies of each portion of the file were necessary to be
distributed to increase the probability that it could be
restored on subsequent visits. The authors exploited the
fact that web storage usage by any given web application is
often transparent to the user, while that the process for
manually removing web storage data is not very intuitive to
the user. They also highlighted that almost any type of data
could be stored in web storage simply by changing it to a
text-based representation that could be later converted to
its native format. This means it is difficult to prevent a
malware distributor from using this storage to store mal-
ware payload, or perhaps code that could be injected into
the browser to download malware. Similarly, a nefarious
developer could easily use a binary-to-text translation tool
to store binary files in a client machine. Lekies and Johns
(2012) showed how malicious users might use web stor-
age to inject JavaScript payload files into web applications.
The authors provided an excellent overview of three attack
scenarios, which shed light on the vulnerabilities associ-
ated with web storage. In their research, they investigated
the top 500,000 domains, as ranked by Alexa (2013), and
showed that web storagewas already widely implemented,
especially among the most popular websites.

These previous studies show the versatile use of web
storage. Current trends indicate that web storage is mostly

A. Mendoza et al. / Digital Investigation 14 (2015) 63e7564



Download English Version:

https://daneshyari.com/en/article/456272

Download Persian Version:

https://daneshyari.com/article/456272

Daneshyari.com

https://daneshyari.com/en/article/456272
https://daneshyari.com/article/456272
https://daneshyari.com

