
Control flow obfuscation for Android
applications

Vivek Balachandran, Sufatrio *, Darell J.J. Tan, Vrizlynn L.L. Thing
Institute for Infocomm Research, Singapore

A R T I C L E I N F O

Article history:

Received 16 December 2015

Received in revised form 11 March

2016

Accepted 12 May 2016

Available online 19 May 2016

A B S T R A C T

Android apps are vulnerable to reverse engineering, which makes app tampering and re-

packaging relatively easy.While obfuscation is widely known to make reverse engineering

harder, complex and effective control flow obfuscations by rearranging Android bytecode

instructions have not been implemented in various Android obfuscation tools. This paper

presents our control-flow obfuscation techniques for Android apps at the Dalvik bytecode

level. Our three proposed schemes go beyond simple control-flow transformations em-

ployed by existing Android obfuscators, and make it difficult for static analysis to determine

the actual app control flows.To realize this, we also address a previously-unsolved register-

type conflict problem that can be raised by the verifier module of the Android runtime system

by means of a type separation technique. Our analysis and experimentation show that the

schemes can offer effective obfuscation with reasonable performance and size overheads.

Combined with the existing data and layout obfuscation techniques, our schemes can offer

attractive measures to hinder reverse engineering and code analysis on Android apps, and

help safeguard Android app developers’ heavy investment in their apps.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Android

Software obfuscation

Mobile security

Reverse engineering

Application security

1. Introduction

Recent years have seen a widespread and pervasive use of
smartphones and tablet devices. The number of smartphones
sold in 2015 surpassed 1.4 billion units, with Android domi-
nating the market with an 80.7% share in Q4 (Gartner, 2013).

This extensive user base of Android devices and the alarm-
ing level of security threats targeting them make the security
of Android applications (henceforth called apps) become a high
priority (Sufatrio et al., 2015). One of the threats to Android apps
is the relatively easy recovery of their app code by an at-
tacker (Nolan, 2012). Android apps can be reverse engineered

easily using off-the-shelf tools like apktool (apktool) or IDAPro
(IDAPro), which results in rampant app tampering and repack-
aging (Zhou et al., 2012). This significantly threatens the fast
growing mobile app market, which is estimated to value at $5.5
billions in 2015 and will reach $8.9 billions in 2018 (Schadler).

One of the techniques used against reverse engineering
attacks is code obfuscation (Collberg et al., 1997). Obfusca-
tion is the process of obscuring a piece of code so that it is
harder to understand the reverse engineered code. Yet, the
transformed code will not change the semantics of the origi-
nal code. Due to this property, obfuscation has been recognized
as a cost-effective mechanism to help app developers protect
their released apps (Collberg and Thomborson, 2002).

* Corresponding author.
E-mail addresses: sufatrio@i2r.a-star.edu.sg (Sufatrio), balav@i2r.a-star.edu.sg (V. Balachandran), jjdtan@i2r.a-star.edu.sg (D.J.J. Tan), vriz@

i2r.a-star.edu.sg (V.L.L. Thing).
http://dx.doi.org/10.1016/j.cose.2016.05.003
0167-4048/© 2016 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 7 2 – 9 3

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:sufatrio@i2r.a-star.edu.sg
mailto:balav@i2r.a-star.edu.sg
mailto:jjdtan@i2r.a-star.edu.sg
mailto:vriz@i2r.a-star.edu.sg
mailto:vriz@i2r.a-star.edu.sg
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2016.05.003&domain=pdf

Existing Android obfuscation tools, however, seem to still lack
complex control-flow obfuscation techniques (see Section 2).

This paper presents three schemes of performing control-
flow obfuscation on Android apps at the Dalvik bytecode level,
which go beyond simple control-flow transformations em-
ployed by existing Android obfuscators (see Section 3). The
schemes disturb the normal control flow of an app method by
making use of packed-switch construct, try-catch construct,
and the combination of the two constructs. They make it dif-
ficult for static analysis to determine the actual control flows
of the apps since the scattered code-block continuations and
exception-raising operations are hard to be statically deter-
mined. While similar notion of control-flow flattening and
signaling exist in the obfuscation literature (Chow et al., 2001;
Popov et al., 2007; Wang et al., 2000), applying such tech-
niques to Android bytecode still requires one to solve a possible
register-type conflict issue, which can be raised by the Android
runtime system1 when an app’s Dalvik bytecode is split, re-
located and/or linked. To address this problem, we propose a
register-type separation technique, which prevents the Android
runtime system from encountering type conflict situations in
the obfuscated apps (see Section 4).

Our analysis and experimentation show that the pro-
posed schemes offer effective obfuscation with acceptable
overheads (see Section 5). Experiments using popular apps and
known benchmark suites show that our obfuscation incurs a
reasonable size-overhead factor of 1.29, and a performance-
overhead factor of 1.19. Combined with other existing forms
of data and layout obfuscation techniques (Collberg et al., 1997),
our proposed control-flow obfuscation schemes can there-
fore make reverse engineering attacks on Android apps much
harder. Furthermore, our register-type separation technique will
also enable other forms of control-flow obfuscation tech-
niques to be applied on Android apps. As such, our proposed
schemes will help hinder reverse engineering of Android apps,
and safeguard app developers’ heavy investment in their apps.

The remainder of this paper is organized as follows. Section
2 provides some background on Android obfuscation and
runtime environments, and also compares related work. Section
3 presents our control-flow obfuscation schemes, while Section
4 describes the register-type conflict problem and elaborates

our solution to it. Section 5 gives evaluation results of our ob-
fuscation schemes. Section 6 further discusses our schemes’
usability and limitations. Finally, Section 7 concludes this paper.

2. Background and related work

2.1. Background on Android obfuscation

Software obfuscation is a well-known technique used for pro-
tecting software from reverse engineering attacks (Collberg et al.,
1997). Although it is theoretically impossible to achieve perfect
obfuscation (Barak et al., 2012), obfuscating a program, in prac-
tice, makes its reverse engineering and code analysis harder
(Collberg and Thomborson, 2002). Harrison (2015) investi-
gates the effect of obfuscation on reverse engineering of Android
apps. It concludes that obfuscation, even with basic tech-
niques employed by ProGuard (ProGuard), can significantly
increase the effort required to understand the obfuscated app.
The importance of Android app obfuscation can be seen with
the integration of ProGuard into the Android build system.The
Android developers’ documentation recommends releasing apps
after obfuscating with ProGuard.

Android apps are released as Dalvik bytecode, which is then
executed by the Android runtime system (more on this in
Section 2.2). To analyze or manipulate an app in the absence
of its source code, an attacker transforms the app bytecode into
an assembly or higher level code representation. The motiva-
tion for the transformation may vary, including understanding
the logic of a function, removing any watermark, or illegal app
repackaging. Dalvik bytecode is an easy target for reverse en-
gineering with various available reverse engineering tools, such
as androguard (androguard), baksmali (smali/baksmali), apktool
(apktool), IDAPro (IDAPro), dexdump (Android, Tools help) and
dex2jar (dex2jar).

Obfuscation techniques that have been applied to Android
apps by existing obfuscation systems include the following (see
also Table 1):

1. Identifier renaming: It renames meaningful class and
method names with arbitrary names like “a” and “b”.

2. Class repackaging: This technique flattens existing multi-
level class hierarchy by moving all classes into a single-
level hierarchy.

3. Excessive overloading: It aggressively overloads different
methods and fields using the same name.

1 Android has two runtime virtual machines, namely DalvikVirtual
Machine (DVM) and the newerAndroid runtime (ART) (Android Open
Source Project, ART and Dalvik). Section 2.2 gives some back-
ground on them and their differences.

Table 1 – Android obfuscators and the types of obfuscations performed.

Tools Type of obfuscation

1 2 3 4 5 6 7 8 9

ProGuard (ProGuard) √ √ √ √

DexGuard (DexGuard) √ √ √ √ √ √ √ √

DashO (DashO) √ √ √ √

DexProtector (DexProtector) √ √ √

jarg (jarg) √

JODE (JODE) √ √

Allatori (Allatori) √ √ √ √

yGuard (yGuard) √

73c om pu t e r s & s e cu r i t y 6 1 (2 0 1 6) 7 2 – 9 3

Download English Version:

https://daneshyari.com/en/article/456362

Download Persian Version:

https://daneshyari.com/article/456362

Daneshyari.com

https://daneshyari.com/en/article/456362
https://daneshyari.com/article/456362
https://daneshyari.com

