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a b s t r a c t

Accurately estimating of IP Traffic matrix (TM) is still a challenging task and it has wide applications in
network management, load-balancing, traffic detecting and so on. In this paper, we propose an accurate
method, i.e., the Moore–Penrose inverse based neural network approach for the estimation of IP network
traffic matrix with extended input and expectation maximization iteration, which is termed as MNETME
for short. Firstly, MNETME adopts the extended input component, i.e., the product of routing matrix's
Moore–Penrose inverse and the link load vector, as the input to the neural network. Secondly, the EM
algorithm is incorporated into its architecture to deal with the output data of the neural network.
Therefore, MNETME manifests itself with the advantages that it needs less input data, but has better
accuracy of estimation. We theoretically analyze the algorithm and then study its performance using the
real data from the Abilene Network. The simulation results show that MNETME leads to a more accurate
estimation in contrast to the previous methods, meanwhile it holds better robustness and can well track
the traffic fluctuations. We finally extend MNETME to random routing networks by proposing a new
model of random routing which overcomes three fatal deficiencies of the existing model and it is easier,
more practical and more precise.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic matrix (TM) reveals flow's volume in a IP network
globally with every entry giving the volume of one origin–desti-
nation (OD) pair's flow. TM plays an important role in network
engineering and administration. For example, network designer
and manager can take advantage of TM to optimize the network's
performance by load-balancing, to detect the abnormal traffic
flows and to restrict some traffic flows for security reason and
so on. Unfortunately, direct accurate measurement is time-
consuming and costly, since the limited and inconsistent router
support for flow level measurement capability in current networks
(Zhang et al., 2003). What's worse, the accurate estimation of TM
is difficult due to the estimation problem is under-constrained. As

a result, given the fact that enormous research efforts have been
directed to this subject in recent decades, the accurate estimation
to TM remains a challenge.

Vardi (1996a) first applied the statistical approach to model TM
estimation problem, which can be categorized into tomography
method. It assumes that there are n nodes and M directed links in
a network, with the number of OD pairs N¼ n� ðn�1Þ. The fun-
damental model of TM estimation is depicted as follows:

Y ¼ AX; ð1Þ
where X denotes the traffic matrix written as a column vector with
N elements, Y denotes the link load column vector with M ele-
ments, and A denotes the M � N routing matrix of a network with
fixed routing. A is a zero-one matrix: its rows represent the
directed links, its columns correspond to the OD pairs, and whe-
ther its entry is one or zero depends on whether the directed link
belongs to the path of the OD pair (see Section 2.1 for detail).
Because the number of OD pairs is bigger than the directed link's
(i.e., MoN), Eq. (1) is under-constrained and its solution is not
unique. To determine a solution from the solution space, Vardi's
work assumes that each OD pair's flow follows Poisson distribu-
tion. Afterwards, the expectation maximization (EM) iteration (see
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Section 2.4 for detail) is used to attain the estimation of TM. Cao
et al. (2000) made subsequent contributions, where the EM
algorithm is modified to use in the Gaussian model. The essence of
tomography method is using models of the higher order statistics
of OD flow to construct additional constraints for ascertaining a
solution. Thus making assumptions of the distribution of OD flow
is inevitable. However, Medina et al. (2002) shown that these basic
assumptions of OD flow which underlie the statistical model are
not validated. What's worse, the above tomography methods
would perform badly when these assumptions are not founded.

To overcome the defect of tomography method, based on
gravity model and tomography method, Zhang et al. (2003) pro-
posed the Tomogravity method which is suitable for practical
network. It uses the gravity model to construct the relationships
between OD flows and thus obtain the gravity model solution of
TM. Then, determine a best solution which has the least Euclidean
distance to the gravity model solution from the solution space of
(1). Finally, exploit the iterative proportional fitting procedure
(IPFP) (Cao et al., 2000) to deal with the data to keep non-
negativity. Tomogravity attains a better accuracy than tomo-
graphy method and needs less time to make computation. How-
ever, Tomogravity also makes its assumption that the OD flows
satisfy the gravity model, and it also has big errors, especially to
those OD flows whose volumes are small. What's worse, Juva
(2007) found that if the OD flows do not satisfy the above
assumption, the accuracy of Tomogravity declines faster than
tomography method. Compared Tomogravity with tomography
method, we find that both of these two methods make assumption
of OD flows, yet the gravity model's assumption is more consistent
with the flows in the real network. As a result, Tomogravity is
superior than tomography method and is a relatively accurate
method so far, which has been used in practical network engi-
neering (Zhang et al., 2003).

Jiang et al. (2011) proposed BPTME method based on back-
propagation neural network (BPNN) (see Section 2.3). In view of
Eq. (1), it adopts the link load vector Y as the input of BPNN and
treats the real traffic matrix X as the output to train the BPNN.
After the training phase, Jiang's work uses the trained BPNN to
predict the future TM. Finally, exploit IPFP to deal with the output
data of BPNN to satisfy (1). In contrast to previous methods,
BPTME avoids complex mathematical computation, and covers
both spatial and temporal correlations of TM rather than the only
spatial correlation attained by Tomogravity and tomography
method. However, the estimation accuracy of BPTMP is still not
satisfying.

Besides, Tan and Wang (2007a,b) study the TM estimation
problem from a view of optimization, Tchrakian et al. (2012),
Caggiani et al. (2012) and Djukic et al. (2012) shed light on real-
time estimation of traffic matrix. Fang et al. (2007) provides a
method that is valid evenwhen the measured data are incomplete.
Jiang et al. (2011), Zhang et al. (2009), Nie et al. (2013), Conti et al.
(2010), Conti et al. (2012), Juva et al. (2006) and Juva () contribute
to the recent development of this problem.

In this paper, we propose a new method (called MNETME) for
traffic matrix estimation which is more accurate compared with
previous representative methods, and even extend it to the ran-
dom routing network by proposing a new advanced random
routing model.

Our method is based on neural network and EM algorithm.
Through mathematical analysis, we adopt the extended input, i.e.,
the product of routing matrix's Moore-Penrose inverse and link
load vector, as the input of neural network and the corresponding
TM as the output. Because the routing information is transmitted
to the neural network by the Moore–Penrose inverse in the input
component, the neural network need not to get such information
from training input–output data. As a result, the neural network

has more space to cover other important information. Conse-
quently, compared with the simple way only using the link load
vector Y as the input part of neural network, which is adopted by
the previous neural network estimation methods, like BPTME,
obviously, MNETME is more accurate, more capable to track the
fluctuations at the same number of data, which is verified by
simulations. What's more, the BPNN's output data post-treated by
EM algorithm further makes the final estimation value more
accurate.

We make two simulations using the real data from the Abilene
Network to justify MNETME by comparing with two previous
representative methods, i.e., Tomogravity and BPTME. The first
simulation result shows that MNETME makes a more accurate
estimation in contrast to the previous two methods, especially to
BPTME, meanwhile holds better robustness and well track the
fluctuations. The second simulation verifies the superiority of the
extended input by comparing with the simple one.

Afterwards, based on the simple introduction of the existing
random routing model (see Section 2.1.2) by Vardi (1996a), we
show its three fatal deficiencies: first, the data needed is impos-
sible to search in the current network architecture; second, this
model cannot cover all possible paths of each OD flow; third, its
assumption that there is no ring in the path of OD flow dose not
satisfy the situation of real network. To overcome all these defi-
ciencies, we propose a new random routing model. It can well
avoid the above three deficiencies and is easier, more practical and
more precise. At last, we extend MNETME to random routing
networks.

This paper is organized as follows. In Section 2, we introduce
relevant background and basic concepts. In Section 3, we respec-
tively introduce the principle of MNETME, its four phases and the
corresponding procedures. In Section 4, we introduce our two
simulations and analyze the results. In Section 5, we propose the
random routing model and extend MNETME to the random rout-
ing networks. In Section 6, we conclude the paper.

2. The TM estimation problem: fixed routing, random routing
and related background

2.1. Routing matrix

The network routing is divided into two categories: fixed
routing and random routing. We respectively introduce them in
the following two subsections.

2.1.1. Routing matrix in fixed routing networks
Let n denotes the number of router nodes and M denotes the

number of directed links in a network. If the network topology is
strongly directly connected and every OD pair's flow between each
two router nodes is permitted, the number of OD pairs is
N¼ n� ðn�1Þ, or that Non� ðn�1Þ. Let A denotes the fixed
routing matrix with M rows and N columns that respectively
corresponding to directed links and OD pairs. It is a zero-one
matrix and whether its entry is one or zero depends on whether
the directed link belongs to the path of the OD pair. For instance, if
the entry aij equals to one, it means the ith directed link belongs to
the path of the jth OD pair.

Example 1. Consider the network topology of Fig. 1. There are
4�3¼12 OD pairs and 9 directed links. The traffic matrix A is in
Table 1 (the blank entries are equal to zero). The routing of each
OD pair is pre-specified in the fixed routing network. For example,
although in Fig. 1 both of paths c-b-a and c-d-b-a, connect
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