
Scalable nearest neighbor query processing based on Inverted
Grid Index

Changqing Ji a,b, Zhiyang Li a, Wenyu Qu a,n, Yujie Xu a, Yuanyuan Li a,c

a School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
b School of Physical Science and Technology, Dalian University, Dalian 116622, China
c School of Software, Dalian Jiaotong University, Dalian 116028, China

a r t i c l e i n f o

Article history:
Received 9 January 2014
Received in revised form
11 May 2014
Accepted 22 May 2014
Available online 10 June 2014

Keywords:
Spatial database
NN query
Inverted Grid Index
Big data

a b s t r a c t

With the increasing availability of Location-Based Services (LBS) and mobile internet, the amount of
spatial data is growing larger. It poses new requirements and challenges for distributed index and query
processing on large scale spatial data. A scalable and distributed spatial data index is important for the
effective Nearest Neighbor (NN) query. There are several approaches that implement distributed indices
and NN query processing with MapReduce, such as R-tree and Voronoi-based index. However, R-tree is
unsuitable for parallelization and Voronoi requires extra computation for localization or local index
reconstruction. In this paper, we investigate how to perform NN queries in a distributed environment.
Firstly, we present distributed approaches that construct a novel distributed spatial data index: Inverted
Grid Index, which is a combination of inverted index and grid partition. Secondly, we illustrate the
implementations of two typical applications: distributed k Nearest Neighbor (kNN) and Reverse Nearest
Neighbor (RNN) queries which are based on our index structure under cloud computing environment.
Finally, we evaluate the effectiveness of our algorithms with extensive experiments using both real and
synthetic data sets. Our experiments demonstrate that the time of constructing index structure
decreases almost linearly as the number of cluster nodes increases. The results also demonstrate the
efficiency and scalability of our NN query algorithms based on Inverted Grid Index.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Large-scale data analysis is the core of main enterprises and
scientific research. In recent years, with the development of LBS
and mobile internet, the amount of geospatial data is growing
rapidly. Due to increasing volume of spatial data, there have many
problems for traditional indexing mechanisms which usually
assume an in-memory index or optimize for local disk access.
Processing spatial analysis and query lead to frequent disk access
using traditional methods. Thus it becomes essential to provide
efficient index and query methods for spatiotemporal databases.

Nearest Neighbors (NN) algorithms draw a lot of attention in
recent years. Typical spatial NN queries algorithms include k
Nearest Neighbors (kNN) and Reverse Nearest Neighbors (RNN),
and so on. kNN query retrieves k objects that lie closest to the
query point q among a given set of objects P. RNN query is to find
all the objects whose nearest neighbor is the given query point.
Both kNN and RNN queries are popular in intelligent navigation,
traffic control, profile based marketing and other areas. An

example of large-scale kNN query is to find some closest restau-
rants at the New York airport initiated by a GPS device. It is a RNN
problem if the restaurant has a marketing application in which the
issue is to determine the business impact of restaurants to
each other.

Although NN has been studied extensively, almost all the
existing works are based on the centralized paradigm that NN is
performed on a single centralized server, such as Korn and
Muthukrishnan (2000), Mokbel et al. (2004) and Tao et al.
(2004). Early research on parallel kNN algorithms in a distributed
shared-nothing multiprocessor environment such as SINA (Mokbel
et al., 2004), introduces the scalable incremental hash-based
algorithm to evaluate a set of concurrent continuous spatial-
temporal queries. TPL algorithms (Tao et al., 2004) use half-space
pruning for exact RNN processing. These methods join in-memory
index with in-disk algorithm to achieve scalability and efficiency.
Because of the limited computational capability and storage
resources of a single machine, these algorithms will eventually
suffer from performance deterioration as the dataset grows larger,
especially for the high-dimensional datasets. So, most existing
methods of NN query cannot deal with the large-scale dataset.

The parallel and distributed processing seems a good solution
to these problems. MapReduce (Dean and Ghemawat, 2008) is a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.05.010
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: wenyu@dlmu.edu.cn (W. Qu).

Journal of Network and Computer Applications 44 (2014) 172–182

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.05.010
http://dx.doi.org/10.1016/j.jnca.2014.05.010
http://dx.doi.org/10.1016/j.jnca.2014.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.05.010&domain=pdf
mailto:wenyu@dlmu.edu.cn
http://dx.doi.org/10.1016/j.jnca.2014.05.010


widely used parallel programming model and computation plat-
form on cloud computing environment. It is very easy to develop
scalable distributed programs to process data-intensive applica-
tions on clusters of commodity machines. MapReduce has
emerged as one of the most widely used parallel computing
platforms for processing data on terabyte and petabyte scales.
Soon after its birth, MapReduce gains a lot of popularity for its
simplicity, flexibility, fault tolerance and scalability. It becomes an
ideal framework for processing big data operations. We will show
later that existing methods of NN query cannot be applied or
extended into MapReduce easily. This mainly lies in two aspects:
lacking of both appropriate distributed index and effective large-
scale query processing methods.

There are several existing approaches that construct spatial
indices distributed, such as parallel building R-tree and Voronoi-
based indices in MapReduce paradigm. Ariel Cary et al.
(Papadopoulos and Manolopoulos, 1997) proposed the bulk con-
struction of R-trees and aerial image quality computation with
MapReduce model. However, tree-based indices (Cary et al., 2009)
do not scale due to the traditional top-down search that overloads
the nodes near the tree root, and fails to provide full decentraliza-
tion. Complex structure makes it difficult to be paralleled and
assemble boundary. Hence, there is considerable overhead of
solving node boundary problems. Moreover, the authors only
presented the distributed method of constructing index, but did
not explain how to process the queries in their paper. Akdogan
et al. (Akdogan et al., 2010) proposed the approach of creating a
spatial index based on Voronoi diagram for given data objects only
in 2D space and enabled efficient processing of a wide range of
geospatial queries. But it needs to build index and execute query
for the enquiry node while processing NN queries. As a result,
when dealing with random queries, there would be extra compu-
tation for localization or local index reconstruction.

Previous work on designing NN query algorithms with MapRe-
duce is generally based on the following approaches. The input
dataset is partitioned into groups and each group is assigned to a
unique machine that performs some computation. Then, they
collect the results of the previous step from the different machines
into a single machine, which performs some computation and
returns the final solution. We can also use the similar approach for
the NN query problems. However, these methods can not improve
the suitability of NN on MapReduce model. Most of the existing
NN query algorithms have inherently sequential characteristics.
So, there are still some difficulties to make the NN algorithms
parallel using MapReuce model.

To our knowledge, our work is the first attempt in designing a
distributed inverted spatial grid index in the cloud computing
context and using it to process spatial kNN and RNN queries with
MapReduce. Our contributions are as follows:

(1) We propose a distributed Inverted Grid Index for given data
objects in multi-dimensional space, which meets the standard
of spatial index: dynamic and simple. Since grid-based index is
simple (Cheema et al., 2007), it can be easily updated and
distributed. Instead of listing all the objects in the forward
index, the Inverted Grid Index structure is developed which
lists the objects per cell. The loose coupling and shared
nothing architecture of Inverted Grid Index scales well.

(2) We implement the Inverted Grid Index with MapReduce and
propose two scalable NN query algorithms, which are based on
our index structure. The implementation designs the mapper
and reducer jobs, and we do not change the existing MapRe-
duce framework.

(3) We also conduct a lot of experiments about constructing the
Inverted Grid Index and processing NN queries to verify the
scalability of our proposed index structure and NN queries

performance. The results show that our index constructing
time is over 25 percent less than R-tree and Voronoi-based
index and the scalability also outperforms the other two index
structures when compute nodes more than four. Our NN query
algorithms are at least three times faster than Voronoi-based
query processing.

This paper extends the earlier published conference paper
(Ji et al., 2012) in several substantial aspects. First, we add more
details about the background, motivation and the related work.
Second, detailed descriptions of scalable RNN query process have
been added based on inverted grid index. Finally, we added more
experiments to evaluate the performance of our proposed
algorithms.

This paper is organized as follows. Section 2 presents related
work. Section 3 proposes the Inverted Grid Index structure and its
construction with MapReduce. Section 4 presents the NN queries
processing algorithm: ParallelCircleTrip and MRRNN based on
Inverted Grid Index. Section 5 describes the experimental results
and performance evaluation. Finally, Section 6 concludes our work.

2. Related work

Processing large-scale spatial index and NN queries have been
studied intensively. The key challenge lies in the large number of
location information that must be managed by an appropriate
indexing structure and efficient query processing algorithms.

Index has a critical impact on the large scale data access. There
are several distributed spatial index approaches like R-tree (Cary et
al., 2009) and Voronoi-based index (Akdogan et al., 2010). How-
ever, the hierarchical indices like R-tree are structurally unsuitable
for MapReduce. Since this hierarchical structure is complex and
serial, it does not scale well and fails to provide full decentraliza-
tion. Voronoi-based index (Akdogan et al., 2010) can be paralle-
lized, but the location of an object in Voronoi-based index takes
extra time and updating of index is also more complex. Chen and
Tu proposed D-Stream (Chen and Tu, 2007), a grid-based partition
algorithm. It is more suitable for parallelization. Inverted Index is
widely used in text retrieval (Zobel et al., 1998), which utilizes
limited index entries to index unlimited data terms to allow fast
full-text searches. Inspired by the Inverted Index, the bag of visual
words model was proposed for image retrieval. Heng Qi et al.
proposed the AM-LCF feature vector and kernel (Qi et al., 2012) to
measure the similarities between sets of feature vectors.

NN queries have received intensive attention in spatial data-
base community in the past decade (Böhm and Krebs, 2004;
Henrich, 1994; Mokbel et al., 2004; Cheema et al., 2007;
Papadopoulos and Manolopoulos, 1997). In an earlier researches,
a snapshot kNN (Henrich, 1994) query is to find the kNN from a
static dataset. Some similarities with kNN processing can be found
in recent years. CircularTrip (Cheema et al., 2007) and Grid-Tree
(Hasan et al., 2010) studied the problem of continuous kNN query
with an in-memory grid index. Taking advantage of grid index, its
data access method is simple and efficient. Furthermore, it can be
distributed. Under restrictions of node memory, in-memory index
is only able to deal with small-scale dataset instead of large-scale
dataset. The locality-sensitive hashing (LSH) (Stupar et al., 2010)
method only works for data in very high dimensions. Korn et al.
firstly (Korn and Muthukrishnan, 2000) defined the RNN queries
and provided a large number of applications. The cost of brute-
force approach is expensive, which scans and computes the whole
input dataset objects. Methods proposed by KM (Korn and
Muthukrishnan, 2000) and TPL (Tao et al., 2004) are structurally
unsuitable for distribution.

C. Ji et al. / Journal of Network and Computer Applications 44 (2014) 172–182 173



Download English Version:

https://daneshyari.com/en/article/457201

Download Persian Version:

https://daneshyari.com/article/457201

Daneshyari.com

https://daneshyari.com/en/article/457201
https://daneshyari.com/article/457201
https://daneshyari.com

