A note on value sets of quartic polynomials

Robert C. Valentini
Department of Mathematics and Statistics, California State University, Long Beach, Long Beach, CA 90840, USA

A R T I C L E I N F O

Article history:

Received 8 August 2015
Accepted 27 January 2016
Communicated by Gary L. Mullen

MSC:

11R58
11 T 55

Keywords:
Quartic polynomial
Value set
Frobenius automorphism

A B S T R A C T

Let v be the number of distinct values of the polynomial $f(x)=x^{4}+a x^{2}+b x$, where a and b are elements of the finite field of size q, where q is odd. When b is 0 , an exact formula for v can be given. When b is not $0, v=(5 / 8) q+O(\sqrt{q})$, where the error term comes from the Riemann hypothesis. In this note we establish for the case that b is not 0 , the inequality $v \geq(q+1) / 2$, without relying on the Riemann hypothesis.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let k be the finite field with q elements, where q is odd. Let $g(x)$ be a quartic polynomial with coefficients in k. Let v be the number of distinct values of $g(x)$. By appropriate choice of α, β, and γ, the polynomial $f(x)=\alpha g(x+\beta)+\gamma$ will have the form $f(x)=x^{4}+a x^{2}+b x$ for some a and b of k. Since the number of distinct values of $f(x)$ is the same as that of $g(x)$, in considering the possibilities for v it is sufficient to restrict attention to polynomials of the form $f(x)$.

[^0]In the case that $b=0$, an exact formula for v can be obtained (see [5, p. 75] and [3] for q prime). For $b \neq 0, v=(5 / 8) q+O(\sqrt{q})$, where the error term comes from the Riemann hypothesis for function fields over finite fields (see [5, p. 75] and [1]). In the next two sections we will consider the case that $b \neq 0$ and establish the inequality $v \geq(q+1) / 2$ without reference to the Riemann hypothesis.

2. No degree one ramification

If we set $y=f(x)$, the field extension $k(x) / k(y)$ is separable of degree 4 and the minimal polynomial of x over $k(y)$ is $F(X)=f(X)-y$. The discriminant of $F(X)$ is a cubic polynomial in y. In this section we assume the discriminant is irreducible in $k[y]$. Hence no finite degree one primes of $k[y]$ ramify in $k(x) / k(y)$.

For any $c \in k, y-c=f(x)-c$ is a quartic polynomial in $k[x]$ and we may consider its factorization. Let

$$
N_{0}=\{c \in k \mid f(x)-c \text { is irreducible }\} .
$$

For $i=1,2,4$, let

$$
N_{i}=\{c \in k \mid f(x)-c \text { has exactly } i \text { distinct linear factors }\} .
$$

Finally, let

$$
N_{3}=\{c \in k \mid f(x)-c \text { factors into } 2 \text { distinct irreducible quadratics }\} .
$$

By our assumption on the discriminant, these are the only possibilities for the factorization of $f(x)-c$. So if for $i=0,1,2,3,4$, we let $n_{i}=\left|N_{i}\right|$, then we have

$$
\begin{equation*}
q=n_{0}+n_{1}+n_{2}+n_{3}+n_{4} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
q=n_{1}+2 n_{2}+4 n_{4} \tag{2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
v=n_{1}+n_{2}+n_{4} \tag{3}
\end{equation*}
$$

Now let K be the Galois closure of $k(x) / k(y)$. Then the Galois group G of $K / k(y)$ is isomorphic to S_{4} [6]. The factorization of a degree one finite prime of $k[y]$ in the extension $k(x) / k(y)$ allows one to determine the nature of the Frobenius automorphism of any prime of K dividing it [4, pp. 97-99]. Indeed, since all elements of S_{4} with the same cycle structure are conjugate, we have Table 1.

https://daneshyari.com/en/article/4582696

Download Persian Version:

https://daneshyari.com/article/4582696

Daneshyari.com

[^0]: E-mail address: robert.valentini@csulb.edu.
 http://dx.doi.org/10.1016/j.ffa.2016.01.013
 1071-5797/® 2016 Elsevier Inc. All rights reserved.

