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1. Introduction

Let k be the finite field with ¢ elements, where ¢ is odd. Let g(z) be a quartic
polynomial with coefficients in k. Let v be the number of distinct values of g(z). By
appropriate choice of «, 8, and ~, the polynomial f(z) = ag(xz + 8) + v will have the
form f(x) = 2* 4+ az? + bx for some a and b of k. Since the number of distinct values of
f(x) is the same as that of g(x), in considering the possibilities for v it is sufficient to
restrict attention to polynomials of the form f(x).
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In the case that b = 0, an exact formula for v can be obtained (see [5, p. 75] and [3] for
q prime). For b # 0, v = (5/8)q+ O(,/q), where the error term comes from the Riemann
hypothesis for function fields over finite fields (see [5, p. 75] and [1]). In the next two
sections we will consider the case that b # 0 and establish the inequality v > (¢ + 1)/2
without reference to the Riemann hypothesis.

2. No degree one ramification

If we set y = f(z), the field extension k(z)/k(y) is separable of degree 4 and the
minimal polynomial of z over k(y) is FI(X) = f(X) — y. The discriminant of F/(X) is a
cubic polynomial in y. In this section we assume the discriminant is irreducible in k[y].
Hence no finite degree one primes of k[y| ramify in k(x)/k(y).

For any ¢ € k, y — ¢ = f(x) — ¢ is a quartic polynomial in k[z] and we may consider
its factorization. Let

No ={ce k]| f(z) — cis irreducible}.
Fori=1,2,4, let
N; ={c€ k| f(z) — c has exactly i distinct linear factors}.
Finally, let
N3 = {c€ k| f(z) — c factors into 2 distinct irreducible quadratics}.

By our assumption on the discriminant, these are the only possibilities for the factoriza-
tion of f(x) —c. So if for i =0,1,2,3,4, we let n; = |N;|, then we have

g=mno+mni+mn2+n3+ny (1)
and
q=n1+2ns +4ny. (2)
Furthermore,
UV ="n1 + Ng + Na. (3)

Now let K be the Galois closure of k(x)/k(y). Then the Galois group G of K/k(y)
is isomorphic to Sy [6]. The factorization of a degree one finite prime of k[y] in the
extension k(z)/k(y) allows one to determine the nature of the Frobenius automorphism
of any prime of K dividing it [4, pp. 97-99]. Indeed, since all elements of S; with the
same cycle structure are conjugate, we have Table 1.
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