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In the previous paper, we established an elementary bound 
for numbers of points of surfaces in the projective 3-space 
over Fq. In this paper, we give the complete list of surfaces 
that attain the elementary bound. Precisely those surfaces are 
the hyperbolic surface, the nonsingular Hermitian surface, and 
the surface of minimum degree containing all Fq-points of the 
3-space.
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1. Introduction

Let S be a surface of degree d in P3 over Fq without Fq-plane components, and Nq(S)
the number of Fq-points of S. In the previous paper [8], we established the elementary 
bound for Nq(S):

Nq(S) ≤ (d− 1)q2 + dq + 1, (1)

and also gave three examples of surfaces that achieve the upper bound (1). The goal of 
this paper is to show that only those three are examples of such surfaces.

Theorem 1. For a surface S in P3 over Fq without Fq-plane components, if equality holds 
in (1), then the degree d of S is either 2 or √q + 1 (when q is a square) or q + 1. 
Furthermore, the surface S is projectively equivalent to one of the following surfaces 
over Fq:

(i) X0X1 −X2X3 = 0 if d = 2;
(ii) X

√
q+1

0 + X
√
q+1

1 + X
√
q+1

2 + X
√
q+1

3 = 0 if d = √
q + 1;

(iii) X0X
q
1 −Xq

0X1 + X2X
q
3 −Xq

2X3 = 0 if d = q + 1.

Notation 2. For an algebraic set X defined by equations over Fq in a projective space, 
the set of Fq-points of X is denoted by X(Fq), and the cardinality of X(Fq) by Nq(X). 
The symbol θq(r) denotes Nq(Pr), and we understand θq(0) = 1.

The set of Fq-planes of P3 is denoted by P̌3(Fq). For an Fq-line l in P3, ľ(Fq) denotes 
the set {H ∈ P̌

3(Fq) | H ⊃ l}.
When Y is a finite set, #Y denotes the cardinality of Y .
When M is a matrix, tM denotes the transposed matrix of M .

2. Review of some results in our previous works

2.1. Plane curves

To investigate plane sections of S, we need some results on plane curves.

Proposition 2.1 (Sziklai bound). Let C be a curve of degree d in P2 over Fq without 
Fq-line components. Then

Nq(C) ≤ (d− 1)q + 1 (2)

unless C is the curve over F4 defined by

(X + Y + Z)4 + (XY + Y Z + ZX)2 + XY Z(X + Y + Z) = 0 (3)
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