Numbers of points of surfaces in the projective 3 -space over finite fields

Masaaki Homma ${ }^{\text {a,1 }}$, Seon Jeong Kim ${ }^{\text {b,*,2 }}$
${ }^{\text {a }}$ Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan
${ }^{\text {b }}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea

A R T I C L E I N F O

Article history:

Received 16 October 2013
Received in revised form 17
February 2015
Accepted 12 March 2015
Available online 28 March 2015
Communicated by James W.P. Hirschfeld

MSC:

14G15
14J70
14N05
14 N 15

Keywords:
Finite field
Surface
Number of points

Abstract

In the previous paper, we established an elementary bound for numbers of points of surfaces in the projective 3-space over \mathbb{F}_{q}. In this paper, we give the complete list of surfaces that attain the elementary bound. Precisely those surfaces are the hyperbolic surface, the nonsingular Hermitian surface, and the surface of minimum degree containing all \mathbb{F}_{q}-points of the 3 -space.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let S be a surface of degree d in \mathbb{P}^{3} over \mathbb{F}_{q} without \mathbb{F}_{q}-plane components, and $N_{q}(S)$ the number of \mathbb{F}_{q}-points of S. In the previous paper [8], we established the elementary bound for $N_{q}(S)$:

$$
\begin{equation*}
N_{q}(S) \leq(d-1) q^{2}+d q+1 \tag{1}
\end{equation*}
$$

and also gave three examples of surfaces that achieve the upper bound (1). The goal of this paper is to show that only those three are examples of such surfaces.

Theorem 1. For a surface S in \mathbb{P}^{3} over \mathbb{F}_{q} without \mathbb{F}_{q}-plane components, if equality holds in (1), then the degree d of S is either 2 or $\sqrt{q}+1$ (when q is a square) or $q+1$. Furthermore, the surface S is projectively equivalent to one of the following surfaces over \mathbb{F}_{q} :
(i) $X_{0} X_{1}-X_{2} X_{3}=0$ if $d=2$;
(ii) $X_{0}^{\sqrt{q}+1}+X_{1}^{\sqrt{q}+1}+X_{2}^{\sqrt{q}+1}+X_{3}^{\sqrt{q}+1}=0$ if $d=\sqrt{q}+1$;
(iii) $X_{0} X_{1}^{q}-X_{0}^{q} X_{1}+X_{2} X_{3}^{q}-X_{2}^{q} X_{3}=0$ if $d=q+1$.

Notation 2. For an algebraic set X defined by equations over \mathbb{F}_{q} in a projective space, the set of \mathbb{F}_{q}-points of X is denoted by $X\left(\mathbb{F}_{q}\right)$, and the cardinality of $X\left(\mathbb{F}_{q}\right)$ by $N_{q}(X)$. The symbol $\theta_{q}(r)$ denotes $N_{q}\left(\mathbb{P}^{r}\right)$, and we understand $\theta_{q}(0)=1$.

The set of \mathbb{F}_{q}-planes of \mathbb{P}^{3} is denoted by $\check{\mathbb{P}}\left(\mathbb{F}_{q}\right)$. For an \mathbb{F}_{q}-line l in $\mathbb{P}^{3}, \check{l}\left(\mathbb{F}_{q}\right)$ denotes the set $\left\{H \in \check{\mathbb{P}}^{3}\left(\mathbb{F}_{q}\right) \mid H \supset l\right\}$.

When Y is a finite set, \# Y denotes the cardinality of Y.
When M is a matrix, ${ }^{t} M$ denotes the transposed matrix of M.

2. Review of some results in our previous works

2.1. Plane curves

To investigate plane sections of S, we need some results on plane curves.

Proposition 2.1 (Sziklai bound). Let C be a curve of degree d in \mathbb{P}^{2} over \mathbb{F}_{q} without \mathbb{F}_{q}-line components. Then

$$
\begin{equation*}
N_{q}(C) \leq(d-1) q+1 \tag{2}
\end{equation*}
$$

unless C is the curve over \mathbb{F}_{4} defined by

$$
\begin{equation*}
(X+Y+Z)^{4}+(X Y+Y Z+Z X)^{2}+X Y Z(X+Y+Z)=0 \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/4582789

Download Persian Version:
https://daneshyari.com/article/4582789

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: homma@kanagawa-u.ac.jp (M. Homma), skim@gnu.kr (S.J. Kim).
 ${ }^{1}$ Partially supported by Grant-in-Aid for Scientific Research (24540056), JSPS.
 ${ }^{2}$ Partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2042228), and also by the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2013.

