

Contents lists available at ScienceDirect

# Journal of Algebra

www.elsevier.com/locate/jalgebra

# On the Gelfand–Kirillov conjecture for the W-algebras attached to the minimal nilpotent orbits



ALGEBRA

## Alexey Petukhov<sup>1</sup>

The University of Manchester, Oxford Road M13 9PL, Manchester, UK

#### ARTICLE INFO

Article history: Received 12 November 2015 Available online 3 September 2016 Communicated by J.T. Stafford

Keywords: W-algebra Gelfand–Kirillov conjecture Noncommutative localization

#### ABSTRACT

Consider the W-algebra H attached to the minimal nilpotent orbit in a simple Lie algebra  $\mathfrak{g}$  over an algebraically closed field of characteristic 0. We show that if an analogue of the Gelfand-Kirillov conjecture holds for such a W-algebra, then it holds for the universal enveloping algebra  $U(\mathfrak{g})$ . This, together with a result of A. Premet, implies that the analogue of the Gelfand-Kirillov conjecture fails for some W-algebras attached to the minimal nilpotent orbit in Lie algebras of types  $B_n$   $(n \geq 3)$ ,  $D_n$   $(n \geq 4)$ ,  $E_6, E_7, E_8$ , and  $F_4$ .

© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Classical works, see for example [4, Theorems 5.1, 5.4], show that any right Nötherian ring has the quotient field which is a noncommutative skew field. In this framework it is natural to ask whether or not such a skew field is isomorphic to a quotient field of a suitable Weyl algebra over a commutative field. A more precise version of this question

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.021 \\ 0021-8693/© 2016 Elsevier Inc. All rights reserved.$ 

E-mail address: alex--2@yandex.ru.

 $<sup>^1</sup>$  On leave from the Institute for Information Transmission Problems, Bolshoy Karetniy 19-1, Moscow 127994, Russia.

is known as the Gelfand–Kirillov conjecture: 'Whether or not the quotient field of the universal enveloping algebra of any algebraic Lie algebra is isomorphic to some Weyl skew field?'. In this paper we study a similar question for some W-algebras.

The solution of the original Gelfand–Kirillov conjecture for Lie algebras of type A and some other cases was settled by I. Gelfand and A. Kirillov themselves [6,7] and is positive. A version of this problem for the W-algebras attached to type A Lie algebras was considered in [5], where the authors provide a positive solution of the corresponding problem. We refer the reader to [1] for a more extensive discussion on the Gelfand–Kirillov conjecture.

In his paper [11], A. Premet shows that the Gelfand-Kirillov conjecture fails for  $U(\mathfrak{g})$  if  $\mathfrak{g}$  is simple and  $\mathfrak{g}$  is not of type  $A_n$ ,  $C_n$  or  $G_2$ . Another result of the same author [10] shows that for a simple Lie algebra  $\mathfrak{g}$  we have that  $U(\mathfrak{g})$  is "almost equal" to the tensor product of some W-algebra with a suitable Weyl algebra.

The goal of this paper is to modify the result of [10], i.e. to show that the quotient field of  $U(\mathfrak{g})$  is isomorphic to the quotient field of the tensor product of the same W-algebra with a suitable Weyl algebra. This, together with results of [11], implies that the Gelfand-Kirillov conjecture fails for some W-algebras. It worth mentioning that such W-algebras are deeply studied in [10] and explicit generators and relations are known for them.

From now on the base field for all objects is an algebraically closed field  $\mathbb{F}$  of characteristic 0.

### 2. W-algebras

A W-algebra  $U(\mathfrak{g}, e')$  is a finitely generated algebra attached to a semisimple Lie algebra  $\mathfrak{g}$  and an  $\mathfrak{sl}_2$ -triple  $\{e', h', f'\}$  inside  $\mathfrak{g}$  (see for example [10]). The isomorphism class of such an algebra  $U(\mathfrak{g}, e')$  depends only on the conjugacy class of e'. We are particularly interested in W-algebras attached to an element e' from the minimal nonzero nilpotent orbit in  $\mathfrak{g}$ . We take an explicit presentation by generators and relations for such a W-algebra [10, Theorem 1.1] and modify the notation of [10] a little. Namely, to a simple Lie algebra  $\mathfrak{g}$  we attach a reductive Lie algebra  $\mathfrak{g}_{e'}(0)$  with a  $\mathfrak{g}_{e'}(0)$ -module  $\mathfrak{g}(1)$ . Then the algebra H (this is a notation of [10] for such W-algebras) would be generated by  $\mathfrak{g}_{e'}(0), \mathfrak{g}(1)$  and an additional element C subject to the following relations:

- (i) xy yx = [x, y] for all  $x, y \in \mathfrak{g}_{e'}(0)$ , where [x, y] is the Lie bracket of  $\mathfrak{g}_{e'}(0)$ ;
- (ii)  $xy yx = x \cdot y$  for all  $x \in \mathfrak{g}_{e'}(0), y \in \mathfrak{g}(1)$ , where  $x \cdot y$  is the action operator of the element  $x \in \mathfrak{g}_{e'}(0)$  applied to  $y \in \mathfrak{g}(1)$ ;
- (iii) C is central in H;
- (iv)  $xy yx = \frac{1}{2}(x, y)(C \Theta_{\text{Cas}} c_0) + F(x, y)$  where (x, y) denote the skew-symmetric  $\mathfrak{g}_{e'}(0)$ -invariant bilinear form on  $\mathfrak{g}(1)$ ,  $\Theta_{\text{Cas}}$  is the Casimir element of  $U(\mathfrak{g}_{e'}(0))$ ,  $c_0$  is a constant depending on  $\mathfrak{g}$ , F(x, y) is a skew symmetric function on  $\mathfrak{g}(1)$  with values in  $U(\mathfrak{g}_{e'}(0))$ , see [10, Theorem 1.1].

Download English Version:

# https://daneshyari.com/en/article/4583583

Download Persian Version:

https://daneshyari.com/article/4583583

Daneshyari.com