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A palindrome is a word which reads the same left-to-right 
as right-to-left. We show that the wreath product G � Zn of 
any finitely generated group G with Zn has finite palindromic 
width. This generalizes the main result from [16]. We also 
show that C � A has finite palindromic width if C has fi-
nite commutator width and A is a finitely generated infinite 
abelian group. Further we prove that if H is a non-abelian 
group with finite palindromic width and G any finitely gener-
ated group, then every element of the subgroup G′ �H can be 
expressed as a product of uniformly boundedly many palin-
dromes. From this we obtain that P �H has finite palindromic 
width if P is a perfect group and further that G � F has finite 
palindromic width for any finite, non-abelian group F .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Palindromic words in groups have been studied from various angles lately. They make 
their first appearance in [8], where D. Collins studied palindromic automorphisms of 
free groups. In [11] H.H. Glover and C.A. Jensen study the geometry of palindromic 
automorphism groups of the free group. Later in [7] it was shown that free groups 
have infinite palindromic and primitive width and F. Deloup [9] studied the palindromic 
map, which is an anti-automorphism, in braid and Artin groups. In Coxeter groups the 
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palindromes in the standard generating set are exactly the conjugates of the generators. 
The property of having finite palindromic width has been studied there under the term 
reflection length. In [15] it has been shown by J. McCammond and T.K. Peterson that 
affine Coxeter groups have uniformly bounded reflection length. For non-affine Coxeter 
groups, K. Duszenko [10] proved that the reflection length is infinite by constructing 
hyperbolic quotients.

More recently, it has been established by V. Bardakov and K. Gongopadhyay [6]
that free nilpotent groups and free abelian-by-nilpotent groups have finite palindromic 
width. A second very recent paper by the same authors shows that some extensions and 
quotients of these groups have finite palindromic width as well [4]. Another paper [5] by 
the same authors proves that certain soluble groups have finite palindromic width. In [6]
they use results about the commutator width in nilpotent groups to establish their result. 
Independently, it has been shown by T. Riley and A. Sale in [16] that free metabelian 
groups have finite palindromic width by using results about skew-symmetric functions 
on free abelian groups. Further, the same authors show that B �Zn has finite palindromic 
width if B is a group with finite palindromic width.

We extend this result to the case where G is any finitely generated group, then we 
show that G �Zn has finite palindromic width. A result by M. Akhavan-Malayeri [3] shows 
that the wreath product of Fd with Zn has finite commutator width. We use the result 
from [3] to prove that Fd � Zn has finite palindromic width and then deduce that this 
property also holds for its quotients. We also give a proof that the wreath product C �A
has finite palindromic width if C is a finitely generated group that has finite commutator 
width and A a finitely generated infinite abelian group.

More generally, let G be any finitely generated group and H a non-abelian group 
which has finite palindromic width with respect to some generating set. We establish 
that every element of the subgroup G′ �H of the regular wreath product G �H is a finite 
product of palindromes. As a corollary we obtain that G �F has finite palindromic width 
if F is a non-abelian finite group or if G is perfect.

More concretely, we prove the following, where pw(G, X) denotes the palindromic 
width of the group G with respect to the generating set X.

Theorem 1.1.

1. Let G be a d-generated group generated by X and E be the standard generating set 
of Zk, for k ∈ N. Then we have that pw

(
G � Zk, X ∪ E

)
≤ 4d + 8k − 1 if k is even 

and pw
(
G � Zk, X ∪ E

)
≤ 4d + 8k + 1 if k is odd.

2. Assume that A is an r-generated infinite abelian group generated by T and C a 
finitely generated group with finite commutator width n. Then pw(C � A, T ∪ Y ) ≤
4|Y | + 5r + 7n, for any finite generating set Y of C.

3. Let G be a finitely generated group and H a non-abelian finitely generated group with 
finite palindromic width with respect to the generating set Z such that there exists a 
relation w that holds in H but w �= 1. Then every element of the subgroup G′ �H can 
be written as a product of at most pw(H, Z) + 1 palindromes.
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