Products of commutators in a Lie nilpotent associative algebra

Galina Deryabina ${ }^{\text {a }}$, Alexei Krasilnikov ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, 2-nd Baumanskaya Street, 5, 105005 Moscow, Russia
b Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, DF, Brazil

A R T I C L E I N F O

Article history:

Received 9 October 2015
Available online 3 September 2016
Communicated by Michel Van den
Bergh

MSC:

16R10
16R40

Keywords:
Polynomial identity
Product of ideals
Commutators

Abstract

Let F be a field and let $F\langle X\rangle$ be the free unital associative algebra over F freely generated by an infinite countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Define a left-normed commutator $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ recursively by $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1},\left[a_{1}, \ldots\right.$, $\left.a_{n-1}, a_{n}\right]=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right](n \geq 3)$. For $n \geq 2$, let $T^{(n)}$ be the two-sided ideal in $F\langle X\rangle$ generated by all commutators $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in F\langle X\rangle\right)$. Let F be a field of characteristic 0. In 2008 Etingof, Kim and Ma conjectured that $T^{(m)} T^{(n)} \subset T^{(m+n-1)}$ if and only if m or n is odd. In 2010 Bapat and Jordan confirmed the "if" direction of the conjecture: if at least one of the numbers m, n is odd then $T^{(m)} T^{(n)} \subset T^{(m+n-1)}$. The aim of the present note is to confirm the "only if" direction of the conjecture. We prove that if $m=2 m^{\prime}$ and $n=2 n^{\prime}$ are even then $T^{(m)} T^{(n)} \nsubseteq$ $T^{(m+n-1)}$. Our result is valid over any field F.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let F be a field. Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be an infinite countable set and let $F\langle X\rangle$ be the free associative algebra over F freely generated by X. Define a left-normed commutator $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ recursively by $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1},\left[a_{1}, \ldots, a_{n-1}, a_{n}\right]=$ [$\left.\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right](n \geq 3)$. For $n \geq 2$, let $T^{(n)}$ be the two-sided ideal in $F\langle X\rangle$ generated by all commutators $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in F\langle X\rangle\right)$.

In 2008 Etingof, Kim and Ma [9] made a conjecture (see Conjecture 3.6 in the arXiv version of [9]) that can be reformulated as follows:

Conjecture 1.1 (see [9]). Let F be a field of characteristic 0. Then $T^{(m)} T^{(n)} \subset T^{(m+n-1)}$ if and only if m or n is odd.

In [9] this conjecture was confirmed for m and n such that $m+n \leq 7$. In 2010 Bapat and Jordan [2, Corollary 1.4] confirmed the "if" direction of the conjecture for arbitrary m, n.

Theorem 1.2 (see [2]). Let F be a field of characteristic $\neq 2,3$. Let $m, n \in \mathbb{Z}, m, n>1$ and at least one of the numbers m, n is odd. Then

$$
\begin{equation*}
T^{(m)} T^{(n)} \subset T^{(m+n-1)} \tag{1}
\end{equation*}
$$

The aim of the present note is to confirm the "only if" direction of the conjecture. Our main result is as follows.

Theorem 1.3. Let F be a field and let $m=2 m^{\prime}, n=2 n^{\prime}$ be arbitrary positive even integers. Then

$$
T^{(m)} T^{(n)} \nsubseteq T^{(m+n-1)}
$$

Recall that an associative algebra A is Lie nilpotent of class at most c if $\left[u_{1}, \ldots, u_{c}\right.$, $\left.u_{c+1}\right]=0$ for all $u_{i} \in A$. We deduce Theorem 1.3 from the following result.

Theorem 1.4. Let F be a field and let $m=2 m^{\prime}, n=2 n^{\prime}$ be arbitrary positive even integers. Then there exists a unital associative algebra A such that the following two conditions are satisfied:
i) for all $u_{1}, u_{2}, \ldots, u_{m+n-1} \in A$ we have

$$
\left[u_{1}, u_{2}, \ldots, u_{m+n-1}\right]=0
$$

https://daneshyari.com/en/article/4583635

Download Persian Version:
https://daneshyari.com/article/4583635

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: galina__deryabina@mail.ru (G. Deryabina), alexei@unb.br (A. Krasilnikov).

