

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Products of commutators in a Lie nilpotent associative algebra

ALGEBRA

Galina Deryabina^a, Alexei Krasilnikov^{b,*}

^a Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, 2-nd Baumanskaya Street, 5, 105005 Moscow, Russia

^b Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, DF, Brazil

ARTICLE INFO

Article history: Received 9 October 2015 Available online 3 September 2016 Communicated by Michel Van den Bergh

MSC: 16R10 16R40

Keywords: Polynomial identity Product of ideals Commutators

АВЅТ КАСТ

Let F be a field and let $F\langle X \rangle$ be the free unital associative algebra over F freely generated by an infinite countable set $X = \{x_1, x_2, \ldots\}$. Define a left-normed commutator $[a_1, a_2, \ldots, a_n]$ recursively by $[a_1, a_2] = a_1a_2 - a_2a_1, [a_1, \ldots, a_{n-1}, a_n] = [[a_1, \ldots, a_{n-1}], a_n]$ ($n \ge 3$). For $n \ge 2$, let $T^{(n)}$ be the two-sided ideal in $F\langle X \rangle$ generated by all commutators $[a_1, a_2, \ldots, a_n]$ ($a_i \in F\langle X \rangle$).

Let F be a field of characteristic 0. In 2008 Etingof, Kim and Ma conjectured that $T^{(m)}T^{(n)} \subset T^{(m+n-1)}$ if and only if mor n is odd. In 2010 Bapat and Jordan confirmed the "if" direction of the conjecture: if at least one of the numbers m, n is odd then $T^{(m)}T^{(n)} \subset T^{(m+n-1)}$. The aim of the present note is to confirm the "only if" direction of the conjecture. We prove that if m = 2m' and n = 2n' are even then $T^{(m)}T^{(n)} \not\subseteq T^{(m+n-1)}$. Our result is valid over any field F.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.031} 0021-8693 @ 2016 Elsevier Inc. All rights reserved.$

E-mail addresses: galina_deryabina@mail.ru (G. Deryabina), alexei@unb.br (A. Krasilnikov).

1. Introduction

Let F be a field. Let $X = \{x_1, x_2, \ldots\}$ be an infinite countable set and let $F\langle X \rangle$ be the free associative algebra over F freely generated by X. Define a left-normed commutator $[a_1, a_2, \ldots, a_n]$ recursively by $[a_1, a_2] = a_1a_2 - a_2a_1$, $[a_1, \ldots, a_{n-1}, a_n] =$ $[[a_1, \ldots, a_{n-1}], a_n]$ $(n \ge 3)$. For $n \ge 2$, let $T^{(n)}$ be the two-sided ideal in $F\langle X \rangle$ generated by all commutators $[a_1, a_2, \ldots, a_n]$ $(a_i \in F\langle X \rangle)$.

In 2008 Etingof, Kim and Ma [9] made a conjecture (see Conjecture 3.6 in the arXiv version of [9]) that can be reformulated as follows:

Conjecture 1.1 (see [9]). Let F be a field of characteristic 0. Then $T^{(m)}T^{(n)} \subset T^{(m+n-1)}$ if and only if m or n is odd.

In [9] this conjecture was confirmed for m and n such that $m + n \leq 7$. In 2010 Bapat and Jordan [2, Corollary 1.4] confirmed the "if" direction of the conjecture for arbitrary m, n.

Theorem 1.2 (see [2]). Let F be a field of characteristic $\neq 2, 3$. Let $m, n \in \mathbb{Z}, m, n > 1$ and at least one of the numbers m, n is odd. Then

$$T^{(m)}T^{(n)} \subset T^{(m+n-1)}.$$
 (1)

The aim of the present note is to confirm the "only if" direction of the conjecture. Our main result is as follows.

Theorem 1.3. Let F be a field and let m = 2m', n = 2n' be arbitrary positive even integers. Then

$$T^{(m)}T^{(n)} \not\subseteq T^{(m+n-1)}.$$

Recall that an associative algebra A is Lie nilpotent of class at most c if $[u_1, \ldots, u_c, u_{c+1}] = 0$ for all $u_i \in A$. We deduce Theorem 1.3 from the following result.

Theorem 1.4. Let F be a field and let m = 2m', n = 2n' be arbitrary positive even integers. Then there exists a unital associative algebra A such that the following two conditions are satisfied:

i) for all $u_1, u_2, \ldots, u_{m+n-1} \in A$ we have

$$[u_1, u_2, \dots, u_{m+n-1}] = 0,$$

that is, the algebra A is Lie nilpotent of class at most m + n - 2;

Download English Version:

https://daneshyari.com/en/article/4583635

Download Persian Version:

https://daneshyari.com/article/4583635

Daneshyari.com