
The Journal of Systems and Software 108 (2015) 178–192

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Exploiting traceability uncertainty among artifacts and code

Achraf Ghabi∗, Alexander Egyed

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

a r t i c l e i n f o

Article history:

Received 14 April 2014

Revised 29 May 2015

Accepted 16 June 2015

Available online 26 June 2015

Keywords:

Traceability

Artifacts to code mapping

Analysis

a b s t r a c t

Traceability between software development artifacts and code has proven to save effort and improve quality.

However, documenting and maintaining such traces remains highly unreliable. Traceability is rarely captured

immediately while artifacts and code co-evolve. Instead they are recovered later. By then key people may

have moved on or their recollection of facts may be incomplete and inconsistent. This paper proposes a lan-

guage for capturing traceability that allows software engineers to express arbitrary assumption about the

traceability between artifacts and code – even assumptions that may be inconsistent or incomplete. Our ap-

proach takes these assumptions to reasons about their logical consequences (hence increasing completeness)

and to reveal inconsistencies (hence increasing correctness). In doing so, our approach’s reasoning is correct

even in the presence of known inconsistencies. This paper demonstrates the correctness and scalability of

our approach on several, large-scale third-party software systems. Our approach is automated and tool sup-

ported.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Traceability is very important during software development, es-

pecially for change impact analysis (Briand et al., 2006; Mäder and

Egyed, 2011) during the maintenance stage (Haumer et al., 1999). Em-

pirical evidence suggests that requirements to code traces can make

bug fixes and features extensions 20–30% faster and over 50% more

correct (Briand et al., in press; Mäder and Egyed, 2011). These ben-

efits are substantial and accentuate that traceability should play a

major role in the software engineering life cycle. Existing commer-

cial tools typically support the recording of traces but not necessarily

their creation or maintenance.

It is presumed that software engineers ’know’ the traces between

software artifacts (e.g., requirements or model elements) and code.

Existing tools merely record them (Egyed and Grunbacher, 2002) –

typically using a trace matrix (TM) that cross-reference artifacts at

the level of granularity the engineers chose (e.g., requirements to

classes vsṙequirements to methods traces). The engineers’ job is to

manually fill in the fields of the matrix by deciding for each cross-

reference whether or not the element on the one side, say a require-

ment, is implemented by the element on the other side, say a method.

A trace matrix thus reveals that traceability is of quadratic complex-

ity: a∗c for a artifacts (e.g., requirements) and c code elements (e.g.,

methods). Each cell in a trace matrix requires a non-trivial, human

∗ Corresponding author. Tel.: +4373224684388.

E-mail addresses: a@ghabi.net (A. Ghabi), alexander.egyed@jku.at (A. Egyed).

decision. Consider, for example, the Gantt Project system (GAN, 2014)

(one of our study systems) with hundreds of artifact elements and

thousands of Java methods. A complete traceability matrix for the

Gantt Project system requires tens of thousands of decisions; one for

every model element/Java method pair. The scalability implication

is daunting (Bianchi et al., 2000). Once established, the traceability

must be kept up-to-date while the software artifacts and/or the code

changes (Clarke et al., 1999) – to remain consistent and useful.

Yet, traceability cannot be captured or maintained by a single en-

gineer because in any complex engineering effort engineers have par-

tial knowledge only. Traceability is thus a collaborative process that

involves many engineers. Moreover, traceability is a mostly manual

process (automation are mostly limited to information retrieval dis-

cussed later). Given that traceability is also of non-linear complex-

ity, it should not surprise that there is never a guarantee of cor-

rectness or completeness. Naturally this is a problem because the

aforementioned studies on the benefits of traces (Briand et al., in

press; Mäder and Egyed, 2011) presume correctness and complete-

ness. Now consider that today most engineering projects do not even

capture traceability (upfront). Rather, they capture it at later stages

(after system completion) or never in which case this knowledge re-

mains in the heads to the engineers who built the system. Unfortu-

nately, during the development of a system and after its delivery to

the client, key personnel may move on. Even if they stay, it is well

documented that the engineers’ recollection of artifacts and code

fades over time – and with it the memory of traceability (Gotel and

Finkelstein, 1994). However, it is exactly here that traceability is most

needed.

http://dx.doi.org/10.1016/j.jss.2015.06.037

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.06.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.037&domain=pdf
mailto:a@ghabi.net
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.jss.2015.06.037


A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 179

Explicit traceability capture is thus a pre-requisite to principled

software engineering. This paper introduces a language and approach

that allows engineers to express traceability at any level of detail,

completeness, certainty, and correctness. An example of a traceability

uncertainty is if the engineer remembers that a given requirement

is implemented in some set of classes but not exactly which ones of

them. It would be wrong for a trace capture tool to force a precise

input from an engineer in the face of such uncertainty. Yet, if multiple

engineers input partially uncertain traceability then it is possible to

combine this knowledge for a more complete understanding. We will

demonstrate that it is possible to automatically reduce, even resolve,

some uncertainty by automatically inserting logical consequences

of the input provided by the engineers. As this example shows, our

approach is most useful for situations where multiple engineers

provide input about traceability. Yet, traceability provided by differ-

ent engineers may not be consistent. We will demonstrate that it

is possible to automatically identify incorrectness where the input

provided by engineers is contradictory. But most significantly, we

will demonstrate that this automation is correct even in the presence

of inconsistent input.

This paper combines our findings from three conference papers

where we described the traceability language for model-to-code

traceability (Egyed, 2004), an effective reasoning mechanism that

is able to check correctness (Ghabi and Egyed, 2012), and manag-

ing inconsistencies in SAT problems with HUMUS (Nöhrer et al.,

2012). The added value is in (a) providing a scalable, precise basis

for reasoning based on SAT solvers; (b) more numerous and larger

empirical evaluations; (c) a broadened scope that covers require-

ments, model elements and code; and (d) the integration of HUMUS

and SAT for correct reasoning in context of potentially inconsistent

traceability.

2. Illustration

We use the illustration of a video-on-demand system (VOD)

(Dohyung) throughout this work to explain many of the uncertainty

and incompleteness issues that characterize artifact-to-code trace-

ability. In Fig. 1 we depict a state transition diagram on the left side

and a table of requirements on the right side. The state transition di-

agram models the behavior of the VOD system. The table of require-

ments on the right side of Fig. 1 is an abbreviated documentation of

the requirements implemented in VOD. Together, these two diagrams

depict the many artifacts that engineers may want to trace to the

code. For example, each requirement (i.e. row) in the table is an ar-

tifact that should be implemented somewhere in the code. The same

is true to for the state transitions. For the sake of brevity we will be

referring to the requirements and state transitions by their IDs: e.g.,

R1 or S4.

The VOD is a real albeit smaller system implemented in Java. For

the sake of brevity we abstract the implementation into five pieces of

code – labelled by their short acronyms {A, B, C, D, E}. Each of them

stands for a set of Java classes.

3. Artifacts and code relationships

While it is common that engineers create and use artifact de-

scriptions, it is still not common to document where exactly each

artifact is implemented in the source code or how it is related to

other software development artifacts. Knowing about traceability is

important for understanding complex systems and understanding

the impact of a change (e.g., if a part of the requirements changes

how would it impact the implementation?). The goal of this work is

to help the engineer explore this kind of relationship between soft-

ware development artifacts and the code. A software development

artifact could be any common artifact used during the development

and/or maintenance of a software project such as UML model, use

cases, or requirements definition.

We refer to a piece of source code as a code element where the

granularity of the code element is entirely user-definable. A code ele-

ment could be a line of code, a method, a class, a package, or any other

logical grouping (e.g., architectural component). We will discuss the

implications of different granularity choices later. We presume that

the code elements are disjoint in that the same line of code may not

belong to more than one code element.

We refer to individual requirements, states transitions, etc as arti-

fact elements. Here also the granularity is arbitrary user definable. For

example, we could trace the entire state transition diagram to code or

we could trace its individual states and transitions. The relationship

between artifact elements and code elements is bidirectional. We ex-

pect that a single artifact element is implemented in multiple code

elements (one-to-many mapping) because artifact elements are typ-

ically higher-level descriptions of the implementation of the system.

Hence they are expected to require larger amounts of code to im-

plement them. However, a single code element may also implement

multiple artifacts (particularly, if the granularity of code elements if

coarse). Moreover, it is not correct to assume that every code element

must implement an artifact element. This assumption is true only if

the artifact elements describe the entire software system. Artifacts

(e.g. models) can be incomplete either by choice or by omission. For

example, the state transition diagram in Fig. 1 is by no means com-

plete and hence not all code will trace to it.

Fig. 1 includes a state transition diagram (which is a behavioral

model) and it includes also a list of requirements. Those artifacts pro-

vide independent perspectives onto a software system – we speak of

multiple perspectives or views (Antoniol, 2001; Gotel and Finkelstein,

1994; Parnas, 1972). Each perspective describes the software system

from a different point of view. For example, the state transition per-

spective describes the software system independently from the re-

quirements but there are clearly overlaps. R4 about stopping the play-

back, for example, is also implemented in the state transition diagram

through various transitions. Perspectives may be at different levels of

abstraction (i.e., separating the structure from the behavior). A code

element may thus implement artifact elements of different perspec-

tives. For example, whatever code implements the stopping of a play-

back implements both the stop transitions and the stop requirement.

Fig. 1. Illustration System: Video On Demand (VOD).



Download English Version:

https://daneshyari.com/en/article/458382

Download Persian Version:

https://daneshyari.com/article/458382

Daneshyari.com

https://daneshyari.com/en/article/458382
https://daneshyari.com/article/458382
https://daneshyari.com

