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0. Introduction

One of the aims of this paper is to give a positive answer to a question raised by the
first author several years ago. More precisely we prove, in several cases, that the group
Aff(G, V™) of affine transformations of a Lie group G endowed with a flat left invariant
affine structure V', admits a flat left invariant projective (some times affine) structure.

Recall that a locally affine manifold is a smooth manifold M endowed with a flat and
torsion free linear connection V. This means that the corresponding affine connection
V is flat. In this case the pair (M, V) is called a flat affine manifold. We will suppose
manifolds to be real connected unless otherwise stated.

The set of diffeomorphisms Aff(M, V) of M preserving V endowed with the open com-
pact topology and composition is a Lie group (see [21] page 229). That F € Aff(M,V)
means that F verifies the system of partial differential equations F,(VxY) = Vg x F.Y,
where F, is the differential of F'and X and Y are smooth vector fields on M. In particular
I preserves geodesics, but in general the group of geodesic preserving diffeomorphisms
of M is larger than Aff(M, V).

The aim of flat affine geometry is the study of flat affine manifolds. The local model
of real flat affine geometry is the n-dimensional real affine space A" endowed with the
usual affine structure V°. This one is given in standard notation by

VY =3 X(g;)0;,  for Y=Y g0
j=1 =1

with X and Y smooth vector fields in A™.

From now on we identify A™ with R™. We will often see R™ as the affine subspace
{(z,1) | € R"} of R*"!. Hence the classical affine group Aff(R™) = R™ %14, n,
GL(R™) of affine transformations of (R", V%) will be identified with a closed subgroup
of GL(R" & R).

Notice also that every invariant pseudo metric in R™ determines the same geodesics
as VY.

Definition 1. A flat affine (respectively a flat projective) Lie group is a Lie group en-
dowed with a flat left invariant affine structure (respectively flat left invariant projective
structure). The first one will be abbreviated as FLIAS. The corresponding infinitesimal
object is called an affine Lie algebra (respectively a projective Lie algebra).

For the local model of flat projective geometry see Section 1.

An important and difficult open problem is to determine whether a manifold (re-
spectively a Lie group) admits a flat (respectively left invariant) affine or projective
structure. Obviously a manifold H\G, where H is a discrete co-compact subgroup of
a flat affine Lie group G, inherits a flat affine structure. Let G be a Lie group of Lie
algebra g := T.(G) with e the unit of G. If z € T.(G), the left invariant vector field
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