
The Journal of Systems and Software 100 (2015) 117–128

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

From source code identifiers to natural language terms

Nuno Ramos Carvalhoa,∗, José João Almeidaa, Pedro Rangel Henriquesa,
Maria João Varandab

a Department of Informatics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Polytechnic Institute of Braganç a, Campus de Santa Apolónia, 5300-253 Braganç a, Portugal

a r t i c l e i n f o

Article history:
Received 2 October 2013
Received in revised form 29 July 2014
Accepted 9 October 2014
Available online 31 October 2014

Keywords:
Program comprehension
Natural language processing
Identifier splitting

a b s t r a c t

Program comprehension techniques often explore program identifiers, to infer knowledge about pro-
grams. The relevance of source code identifiers as one relevant source of information about programs is
already established in the literature, as well as their direct impact on future comprehension tasks.

Most programming languages enforce some constrains on identifiers strings (e.g., white spaces or
commas are not allowed). Also, programmers often use word combinations and abbreviations, to devise
strings that represent single, or multiple, domain concepts in order to increase programming linguistic
efficiency (convey more semantics writing less). These strings do not always use explicit marks to distin-
guish the terms used (e.g., CamelCase or underscores), so techniques often referred as hard splitting are
not enough.

This paper introduces Lingua::IdSplitter a dictionary based algorithm for splitting and expanding
strings that compose multi-term identifiers. It explores the use of general programming and abbrevia-
tions dictionaries, but also a custom dictionary automatically generated from software natural language
content, prone to include application domain terms and specific abbreviations. This approach was applied
to two software packages, written in C, achieving a f-measure of around 90% for correctly splitting and
expanding identifiers. A comparison with current state-of-the-art approaches is also presented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Understanding source code is a requirement for software main-
tenance and evolution tasks (Von Mayrhauser and Vans, 1995;
Corbi, 1989). Software reverse engineering, is a process that aims
to infer how a program works by analyzing and inspecting its
building blocks and how they interact to achieve their intended
purpose (Nelson, n.d.; Chikofsky and Cross, 1990). Many of these
techniques rely on mappings between human oriented concepts
and program elements (Rajlich and Wilde, 2002). Identifiers are
one of the major source of information about program elements
(Caprile and Tonella, 1999, 2000), and their meaningfulness has a
direct impact on future comprehension tasks (Lawrie et al., 2006).
Today, most of the programming communities promote the use
of best practices and coding standards, that usually include rules
and naming conventions which tend to improve the quality of

∗ Corresponding author. Tel.: +351 253 604 430.
E-mail addresses: narcarvalho@di.uminho.pt (N.R. Carvalho), jj@di.uminho.pt

(J.J. Almeida), prh@di.uminho.pt (P.R. Henriques), mjoao@ipb.pt (M.J. Varanda).

identifiers used (e.g., the style guide for the Python programming
language1).

Program identifiers have been greatly explored in the context of
program understanding: for concept and concern location (see, e.g.,
Shepherd et al., 2007; Marcus et al., 2004; Abebe and Tonella, 2010;
Liu et al., 2007), relating documentation with source code (see, e.g.,
Antoniol et al., 2002; Yadla et al., 2005; Marcus and Maletic, 2003),
and other assorted software analysis applications (see, e.g., Lawrie
et al., 2007; Lawrie and Binkley, 2011; Enslen et al., 2009; Carvalho
et al., 2012, 2014). All this work can benefit from better program
identifiers handling, and in many cases results can be improved (Dit
et al., 2011).

Programming languages grammars constrain the strings that
can be used as identifiers, not allowing spaces and other special
characters (e.g., commas). These also tend to be short and easy
to remember. Thus, acronyms and abbreviations are frequently
used to represent real world concepts. The major goal of the work
described in this paper, and related work (see Section 2), is to

1 Available from: http://legacy.python.org/dev/peps/pep-0008/ (Last accessed:
31-03-2014).

http://dx.doi.org/10.1016/j.jss.2014.10.013
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.10.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.10.013&domain=pdf
mailto:narcarvalho@di.uminho.pt
mailto:jj@di.uminho.pt
mailto:prh@di.uminho.pt
mailto:mjoao@ipb.pt
http://legacy.python.org/dev/peps/pep-0008/
dx.doi.org/10.1016/j.jss.2014.10.013

118 N.R. Carvalho et al. / The Journal of Systems and Software 100 (2015) 117–128

promote strings used as identifiers in the program domain, to sets
of terms representing concepts in the application domain.

Identifiers created using a single word (or abbreviation) are
easier to relate with domain terms. The real challenge are com-
pound identifiers, i.e., identifiers assembled using more than one
string (each representing a term), because these strings need to
be correctly isolated before they can be linked with domain con-
cepts. Moreover, these strings can be abbreviations or acronyms,
and not actual words, increasing the tokenization process diffi-
culty. Sometimes an explicit mark is used to delimit the strings
used, for example, the identifier “insert user” uses the underscore
as an explicit mark to clearly distinguish the word “insert” and the
word “user”. Another common explicit technique is the CamelCase
notation, for example in the identifier “insertUserData” the words
used are explicitly delimited with an uppercase letter. This trend of
explicit word compounds are referred in the literature as hard splits
(or hard words). Many times no explicit mark is used to delimit the
words, for example the identifier “timesort”, was formed by joining
the words “time” and “sort”, but there is no explicit mark where one
word ends, and the next word begins. This is usually referred as soft
splits (or soft words). Splitting soft words is more complex that hard
words, and the complexity increases when acronyms or abbrevia-
tions are used instead of complete words (Lawrie et al., 2006, 2006,
2007).

This paper introduces Lingua::IdSplitter (henceforth abbrevi-
ated LIdS),2 a simple and fast algorithm that addresses the problem
of splitting soft words, and can cope with abbreviations, acronyms,
or any type of linguistic short-cuts (for example, use only the
first letter of a word). The algorithm calculates a ranked list of
all the possible splits for an identifier, based on a set of dictio-
naries, and the top entry in the rank is proposed as the correct
split. Besides the actual split, the result includes the set of full
terms that compose the identifier, in case abbreviations were used
for example. This technique can use an arbitrary set of dictio-
naries, but one of the major advantages of this approach is the
use of a software specific dictionary computed automatically from
the documentation corpus – built automatically and specific to
each software package – using a combination of Natural Language
Processing (NLP) techniques. This dictionary enables the algorithm
to correctly handle identifiers splitting using arbitrary abbrevia-
tions or combinations of terms specific to the application domain,
not prone to be present in more general programming dictionar-
ies.

To validate this approach, the technique was applied to sets
of identifiers extracted from two open source projects writ-
ten in C, using a heterogeneous combination of techniques for
multi-word identifiers. The calculated sets of splits were com-
pared with the manual split (traditionally called the oracle) and
the overall splitting accuracy for several different settings was
above 80%. To compare LIdS’s performance against other state-of-
the-art approaches, LIdS was also applied to other case studies
available in the literature, in order to compare the achieved
results.

The remainder of this paper is organized as follows: Section 2
discusses some related work; Section 3 describes the proposed
approach to split and expand identifiers; Section 4 describes in
detail the experimental study done to validate LIdS effectiveness;
Section 5 relates and compares this work with state-of-the-art
techniques that address the same problem; and finally, Section 6
presents some closing remarks and trends for future work.

2
LIdS is available under GNU General Public License in the official comprehen-

sive Perl network (CPAN) from: http://search.cpan.org/dist/Lingua-IdSplitter/ (Last
accessed: 09-07-2014).

2. Related work

The work by Caprile and Tonella (1999), describes their lexi-
cal, syntactical and semantic analysis of function identifiers. In this
work the creation of a dictionary based on information extracted
from the software (source code mainly) was also a concern, and
a valuable source of information. It also helps to highlight the
relevance of NLP techniques applied in the context of Program
Comprehension.

Enslen et al. (2009) describe Samurai, an automatic approach
to split identifiers that uses a scoring function based on program-
specific and global frequency tables. These tables are built by
mining strings frequency in source code. The main intuition behind
this algorithm is that sub-strings used as part of an identifier are
likely to be used in other identifier from the same software, or even
in other programs. A similar concern is behind our proposed cus-
tom corpus-based dictionaries, the expressions and terms found in
natural language text belonging to the software domain are prone
to be used as identifiers.
TIDIER (Madani et al., 2010; Guerrouj et al., 2011) is another

approach for identifiers splitting. This algorithm is based in the
Dynamic Time Warping algorithm, initially devised to compute dis-
tances in the context of speech recognition. And tries to achieve the
correct split by computing distances between the identifier and
words found in a set of dictionaries. This algorithm shares some
concerns with LIdS, namely: (1) the use of dictionaries, includ-
ing domain specific dictionaries, (2) the inference of abbreviations
is based on computing some kind of metric between the iden-
tifier and words found in dictionaries. A possible short-coming
of this approach (and the previous one – Samurai) is that both
can produce a different split for the same identifier in different
iterations. TIDIER also does not handle splitting identifiers that con-
tain single letter abbreviations (e.g., “gchord”). LIdS given the same
input, and the same set of dictionaries, always computes the same
split/expansion.

TRIS (Guerrouj et al., 2012) is a more recent technique for split-
ting and expanding program identifiers proposed by the same
authors of TIDIER. It also uses a set of dictionaries, general and
domain specific. TRIS handles the splitting and expansion as an
optimization problem, divided in two stages. During the first stage
a set of dictionary word transformations is created including cor-
responding costs, and during the second phase the goal is to find
the optimal path in the expansion graph. The resulting split and
expansion corresponds to the one with the minimal cost.

The GenTest normalization algorithm proposed by Lawrie
et al. (2010) and Lawrie and Binkley (2011) involves vocabulary
normalization found in software artifacts (e.g., source code, doc-
umentation) to improve Information Retrieval software analysis
tools. This algorithm starts by scoring all the possible splits, and the
resulting split is the one with the highest score. The scoring func-
tion is based in a set of metrics, based on internal information (e.g.,
word characteristics), and external information (e.g., dictionaries).

LINSEN is an approach for splitting identifiers, and expanding
abbreviations, proposed by Corazza et al. (2012). The authors pro-
pose the use of the Baeza-Yates and Perleberg, an approximate
string matching technique, and the use of several general and
domain specific dictionaries, to find a mapping between program
identifiers and the corresponding set of dictionary words.

The work by Sureka (2012), is a more recent approach for split-
ting identifiers using the Yahoo web search and image search
similarity distance. The main idea is that strings used as identifiers
represent concepts in real life, and documents indexed in search
engines include images and text, providing information to compute
possible splits scores.

Butler et al. (2011) describe the INTT algorithm, a technique
for identifiers names automatic tokenization, with special focus on

http://search.cpan.org/dist/Lingua-IdSplitter/

Download English Version:

https://daneshyari.com/en/article/458402

Download Persian Version:

https://daneshyari.com/article/458402

Daneshyari.com

https://daneshyari.com/en/article/458402
https://daneshyari.com/article/458402
https://daneshyari.com

