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This article examines and distinguishes different techniques
for coding incomputable information into infinite dimensional
proper subspaces of a computable vector space, and is divided
into two main parts. In the first part we describe different
methods for coding into infinite dimensional subspaces.
More specifically, we construct several computable infinite
dimensional vector spaces each of which satisfies one of the
following:

(1) Every infinite/coinfinite dimensional subspace computes
Turing’s Halting Set ∅′;

(2) Every infinite/cofinite dimensional proper subspace com-
putes Turing’s Halting Set ∅′;

(3) There exists x ∈ V such that every infinite dimensional
proper subspace not containing x computes Turing’s
Halting Set ∅′;

(4) Every infinite dimensional proper subspace computes
Turing’s Halting Set ∅′.
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Vector space (4) generalizes vector spaces (1) and (2), and
its construction is more complicated. The same simple and
natural technique is used to construct vector spaces (1)–(3).
Finally, we examine the reverse mathematical implications of
our constructions (1)–(4).
In the second part we examine the limitations of our simple
and natural method for coding into infinite dimensional
subspaces described in the previous paragraph. In particular,
we prove that our simple and natural coding technique cannot
produce a vector space of type (4) above, and that any vector
space of type (4) must have “densely many” (from a certain
point of view) finite dimensional computable subspaces. In
other words, the construction of a vector space of type (4) is
necessarily more complicated than the construction of vector
spaces of types (1)–(3). We also introduce a new statement
(in second order arithmetic) about the existence of infinite
dimensional proper subspaces in a restricted class of vector
spaces related to (1)–(3) above and show that it is implied by
weak König’s lemma in the context of reverse mathematics.
In the context of reverse mathematics this gives rise to
two statements from effective algebra about the existence
of infinite dimensional proper subspaces (for a certain class
of vector spaces) of the form (∀V )[X(V ) → A(V )] and
(∀V )[X(V ) → B(V )], that each imply ACA0 over RCA0,
but such that the seemingly weaker statement (∀V )[X(V ) →
A(V )∨B(V )] is provable via WKL0 over RCA0. Furthermore,
we highlight some general similarities between constructing
of infinite dimensional proper subspaces of computable vector
spaces and constructing solutions to computable instances of
various combinatorial principles such as Ramsey’s Theorem
for pairs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Computable algebra is the branch of mathematical logic that deals with the algorith-
mic properties of algebraic structures, and dates back to the works of early mathemati-
cians including Euclid, Gauss, and others. More recently the subject was formalized by
Turing and others, leading to the well-known solutions of the word problem for groups
by Novikov and Boone, and Hilbert’s tenth problem by Matiyasevich and others.

This main theorem of this article answers a problem of Downey and others who
asked about the proof-theoretic strength of the statement “every infinite dimensional
vector space contains a proper infinite dimensional subspace” in second order arithmetic.
Moreover this problem grew out of an attempt to classify the proof-theoretic strength
of the well-known theorem from Commutative Algebra that says every Artinian ring is
Noetherian. The latter problem was recently solved by the author.

More specifically, this article is a sequel to [6,10,13,14] in which the author and others
attempted to determine the reverse mathematical strengths of the statements “every
Artinian ring is Noetherian,” “every ring that is not a field contains a nontrivial ideal,”
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