
ROPocop — Dynamic mitigation of code-reuse
attacks

Andreas Follner *, Eric Bodden
Secure Software Engineering Group, Technische Universität Darmstadt, Rheinstr. 75, 64295 Darmstadt,
Germany

A R T I C L E I N F O

Article history:

Available online 22 February 2016

A B S T R A C T

Control-flow attacks, usually achieved by exploiting a buffer-overflow vulnerability, have been

a serious threat to system security for over fifteen years. Researchers have answered the

threat with various mitigation techniques; but nevertheless, new exploits that success-

fully bypass these technologies still appear on a regular basis.

In this paper, we propose ROPocop, a novel approach for detecting and preventing the

execution of injected code and for mitigating code-reuse attacks such as return-oriented

programming (RoP). ROPocop uses dynamic binary instrumentation, requiring neither access

to source code nor debug symbols or changes to the operating system. It mitigates attacks

both by monitoring the program counter at potentially dangerous points and by detecting

suspicious program flows.

We have implemented ROPocop for Windows x86 using PIN, a dynamic program instru-

mentation framework from Intel. Benchmarks using the SPEC CPU2006 suite show an average

overhead of 2.4×, which is comparable to similar approaches, which give weaker guaran-

tees. Real-world applications show only an initially noticeable input lag and no stutter. In

our evaluation our tool successfully detected all 11 of the latest real-world code-reuse ex-

ploits, with no false alarms.Therefore, despite the overhead, it is a viable, temporary solution

to secure critical systems against exploits if a vendor patch is not yet available.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Buffer overflow

Return-oriented programming

Code-reuse attack

System security

Exploit mitigation

Dynamic binary instrumentation

1. Introduction

Attacks that aim at manipulating a program’s control flow, often
through a buffer overflow vulnerability, are still one of the
biggest threats to software written in unsafe languages like C
or C++ (Bubinas, 2013). If successfully exploited, control-flow
attacks can allow an adversary to execute arbitrary code. In
the early 2000s, operating-system developers started adding
mitigation techniques into their software. To this day, new

techniques are added on a regular basis; however, while they
make successful and reliable exploitation much more diffi-
cult, they can be bypassed.

Contests like, e.g., pwn2own (Gunn, 2014) continuously show
that current mitigation techniques are insufficient when it
comes to protecting applications, and that more comprehen-
sive methods are required. Currently, the most widely used
attack technique, and an essential part of virtually every exploit,
is RoP (Roemer et al., 2012), where instead of injecting new code,
an attacker pieces together short code fragments, which already

* Corresponding author. Secure Software Engineering Group, Technische Universität Darmstadt, Rheinstr. 75, 64295 Darmstadt, Germany.
Tel.: +49 6151 869342; fax: +49 6151 869127.

E-mail address: andreas.follner@cased.de (A. Follner).
http://dx.doi.org/10.1016/j.jisa.2016.01.002
2214-2126/© 2016 Elsevier Ltd. All rights reserved.

j o u rna l o f i n f o rma t i on s e cu r i t y and a p p l i c a t i on s 2 9 (2 0 1 6) 1 6 – 2 6

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate / j isa

ScienceDirect

mailto:andreas.follner@cased.de
http://www.sciencedirect.com/science/journal/22142126
http://www.elsevier.com/locate/JISA
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2016.01.002&domain=pdf

exist in memory. Recently proposed solutions against such
attacks mostly built on CFI (Pappas et al., 2013; Zhang et al.,
2013; Zhang and Sekar, 2013) seemed effective, but have been
shown to be bypassable (Davi et al., 2014; Göktaş et al., 2014).
Section 2 elaborates on these issues in detail.

To battle current exploitation mechanisms we propose
ROPocop, a novel tool that mitigates control-flow attacks for
x86 Windows binaries using two novel techniques: AntiCRA and
DEP+. AntiCRA greatly reduces the risk of successful code-
reuse attacks by detecting an unusually high rate of successive
indirect branches during the execution of unusually short basic
blocks. As different programs can exhibit very different be-
havior with regard to that aspect, using the same threshold
for every program is suboptimal.Therefore, ROPocop comes with
a learning mode, which runs ahead of time and determines
appropriate thresholds, which can be adopted by the user.
However, we do also provide default thresholds which work
very well in practice and for a large selection of programs, as
our evaluation shows.

Our second contribution, DEP+, implements a variant of a
non-executable stack through dynamic binary instrumenta-
tion. DEP+ assumes that all code has to reside within a program
image, i.e., the .text section of any PE file. This is very similar
to DEP (Andersen and Abella, 2004); however, DEP+ cannot be
disabled through API calls, thereby eliminating a large class
of exploits that are based on such calls. DEP+ enforces all
memory to be non-executable, except for the parts to which
images are loaded. To this end, DEP+ monitors the loading
and unloading of images, checking after each indirect
branch whether the program counterpoints outside the known
images.

We have implemented ROPocop for Windows x86 using PIN
(Luk et al., 2005), a freely-available dynamic program instru-
mentation framework from Intel. ROPocop requires no access
to source code or root privileges, nor debug symbols or changes
to the operating system. Measurements using the artificial SPEC
CPU2006 suite show an average overhead of 2.4×. More impor-
tantly, experiments on real-world applications show only an
initially noticeable input lag (caused by the initial dynamic in-
strumentation) and no stutter. Our evaluation using 11 of the
latest code-reuse exploits shows that our tool successfully pre-
vents all code-injection attacks and code-reuse attacks from
succeeding, even a highly sophisticated attack that relies solely
on code reuse (Li and Szor, 2013). Our envisioned usage of
ROPocop is to use it as a last line of defense against exploi-
tation of critical systems, e.g., when a severe vulnerability has
been discovered but no patch is available.

To summarize, this work makes the following original
contributions:

• AntiCRA, a tunable heuristic detection of code-reuse-
attacks like RoP and JoP,

• DEP+, a comparatively fast and very robust implementa-
tion of a non-executable stack,

• ROPocop, a dynamic instrumentation tool based on PIN
which detects various kinds of control-flow attacks using
the above techniques, and

• an empirical evaluation showing that ROPocop ‘s mitiga-
tion approach is highly effective and shows tolerable runtime
overheads.

We make ROPocop available online as open source, along
with all our experimental data (https://sites.google.com/site/
ropocopresearch/).

2. Current situation

Exploiting vulnerabilities with the goal to manipulate the
program flow was relatively trivial on Windows until the early
2000s, when Microsoft began adapting mitigation techniques.
In the simplest cases, an attack widely known as stack smash-
ing (One, 1996) could be used. Such an attack would leverage
unbounded functions, such as strcpy, to write beyond the al-
located memory of a buffer. Attackers could thus overwrite the
function’s stored return address on the stack with an address
that points to injected code, which the program will execute
after the next return.

To defend against such code injection attacks, Microsoft
implemented Data Execution Prevention (DEP) (Microsoft), which
makes use of a processor’s NX (no execute) bit. DEP marks pages
which contain data as non-executable, causing a hardware-
level exception if execution from within such a page is
attempted. This successfully prevents attacks that attempt to
execute injected code.

Nevertheless, attackers can bypass DEP in various ways. At
present, the most widely used technique is called return-
oriented programming (Shacham, 2007). When utilizing RoP,
an attacker does not inject any code but instead uses exist-
ing code fragments (gadgets), which all end with a return
instruction. In other words, instead of injecting code, the at-
tacker injects the addresses of the gadgets he wants to execute.
On x86, return works by popping an address off the stack into
the register EIP and then jumping to that address. By crafting
a stack filled with a sequence of gadget addresses, the at-
tacker can execute sequences of gadgets, with the return
instruction at the end of each gadget transferring the program
flow to the next gadget. Jump-oriented programming (JoP)
(Bletsch et al., 2011; Checkoway et al., 2010; Min et al., 2012)
is based on the same basic concept as RoP, but uses jmp in-
structions to transfer control flow to the next gadget. In the
following, we refer to both RoP and JoP attacks as code-reuse
attacks.

The success of code-reuse attacks depends on the avail-
ability of useful gadgets on the target platform and the
complexity of the code the attacker wants to run. In practice,
however, most systems are vulnerable to such code-reuse
attacks. Furthermore, RoP attacks are relatively complex to stage,
which is why most attacks of this kind do not resort to pure
RoP, but rather implement a two-staged approach.The first stage
uses RoP to call a Windows API function like VirtualProtect
(see below) which marks a certain memory region as execut-
able, effectively bypassing DEP. This is followed by the second
stage, running code previously injected into that memory region,
which can then be executed as normal. Code-reuse attacks work
reliably if the memory layout of an application is highly de-
terministic because an attacker can hard-code the addresses
of gadgets directly into the exploit. To mitigate this, Microsoft
introduced randomness in the form of ASLR (Howard et al.,
2010). ASLR randomizes the order in which images are loaded

17j o u rna l o f i n f o rma t i on s e cu r i t y and a p p l i c a t i on s 2 9 (2 0 1 6) 1 6 – 2 6

https://sites.google.com/site/ropocopresearch/
https://sites.google.com/site/ropocopresearch/

Download English Version:

https://daneshyari.com/en/article/458947

Download Persian Version:

https://daneshyari.com/article/458947

Daneshyari.com

https://daneshyari.com/en/article/458947
https://daneshyari.com/article/458947
https://daneshyari.com

