
The Journal of Systems and Software 107 (2015) 1–14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An experimental investigation on the innate relationship between

quality and refactoring

Gabriele Bavota a,∗, Andrea De Lucia b, Massimiliano Di Penta c, Rocco Oliveto d, Fabio Palomba b

a Free University of Bozen-Bolzano, Bolzano, Italy
b University of Salerno, Fisciano (SA), Italy
c University of Sannio, Benevento, Italy
d University of Molise, Pesche (IS), Italy

a r t i c l e i n f o

Article history:

Received 8 April 2015

Revised 8 May 2015

Accepted 12 May 2015

Available online 21 May 2015

Keywords:

Refactoring

Code smells

Empirical study

a b s t r a c t

Previous studies have investigated the reasons behind refactoring operations performed by developers, and

proposed methods and tools to recommend refactorings based on quality metric profiles, or on the presence

of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks obser-

vations about the relations between metrics/code smells and refactoring activities performed by developers.

In other words, the characteristics of code components increasing/decreasing their chances of being object

of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the

evolution history of three Java open source projects to investigate whether refactoring activities occur on

code components for which certain indicators—such as quality metrics or the presence of smells as detected

by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not,

quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are

generally focused on code components for which quality metrics do not suggest there might be need for

refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code

smells. However, only 7% of the performed operations actually remove the code smells from the affected

class.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Refactoring has been defined by Fowler as “the process of chang-

ing a software system in such a way that it does not alter the external

behavior of the code yet improves its internal structure” (Fowler et al.,

1999). This definition entails a strong relationship between refactor-

ing and internal software quality, i.e., refactoring improves software

quality (improves the software internal structure). This has motivated

research on bad smell and antipattern detection and on the identifi-

cation of refactoring oppotunities (Bavota et al., 2013a; Boussaa et al.,

2013; Fokaefs et al., 2011; Kessentini et al., 2010; Moha et al., 2010;

Palomba et al., 2015; Tsantalis and Chatzigeorgiou, 2009).

However, whether refactoring is actually guided by poor design

has not been empirically evaluated enough. Thus, this assumption

still remains—for some aspects—a common wisdom that has gener-

ated controversial positions (Kim et al., 2012). Specifically, there are

no studies that quantitatively analyze which are the quality charac-

teristics of the source code increasing their likelihood of being subject

∗ Corresponding author. Tel.: +39 333 594 4151.

E-mail address: gabriele.bavota@unibz.it (G. Bavota).

of refactoring operations. To the best of our knowledge, the available

empirical evidence is based on two surveys performed with develop-

ers trying to understand the reasons why developers perform refac-

toring operations (Kim et al., 2012; Wang, 2009).

In addition, concerning the improvement of the internal quality of

software, empirical studies have only shown that generally refactor-

ing operations improve the values of quality metrics (Kataoka et al.,

2002; Leitch and Stroulia, 2003; Moser et al., 2006; Ratzinger et al.,

2005; Shatnawi and Li, 2011), while the effectiveness of refactoring

in removing design flaws (such as code smells) is still unknown.

In order to fill this gap, we use an existing tool, namely Ref-Finder

(Prete et al., 2010), to automatically detect refactoring operations

of 52 different types on 63 releases of three Java software systems,

namely Apache Ant,1 ArgoUML,2 and Xerces-J.3 Since Ref-Finder can

identify some false positives, we manually analyzed the 15,008 refac-

toring operations detected by the tool. Among them, 2086 were

1 http://ant.apache.org/.
2 http://argouml.tigris.org/.
3 http://xerces.apache.org/xerces-j/.

http://dx.doi.org/10.1016/j.jss.2015.05.024

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.05.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.05.024&domain=pdf
mailto:gabriele.bavota@unibz.it
http://ant.apache.org/
http://argouml.tigris.org/
http://xerces.apache.org/xerces-j/
http://dx.doi.org/10.1016/j.jss.2015.05.024


2 G. Bavota et al. / The Journal of Systems and Software 107 (2015) 1–14

Table 1

Characteristics of the analyzed projects.

Project Period Analyzed #Releases Classes KLOC

Apache Ant Jan 2000-Dec 2010 1.2–1.8.2 17 87-1,191 8-255

ArgoUML Oct 2002-Dec 2011 0.12–0.34 13 777-1,519 362-918

Xerces-J Nov 1999-Nov 2010 1.0.4–2.9.1 33 181–776 56-179

Overall – – 63 – –

classified as false positives. Thus, in the context of our study we ana-

lyzed 12,922 refactoring operations.

Having identified the refactoring operations, for each class in the

analyzed systems’ releases we (i) measured a set of eleven quality

metrics, and (ii) detected if it is affected by any instance of eleven

code smells. Using these data we verify whether refactoring oper-

ations occur on code components for which the factors above (i.e.,

quality metrics, presence of code smells) suggest there might be need

for refactoring operations. In addition, we also measure the effective-

ness of refactoring operations in terms of their ability to remove code

smells.

The results achieved can be summarized as follows:

1. More often than not, quality metrics do not show a clear relation-

ship with refactoring. In other words quality metrics might sug-

gest classes as good candidates to be refactored that are generally

not involved in developers’ refactoring operations.

2. Among the 12,922 refactoring operations analyzed, 5425 are per-

formed by developers on code smells (42%). However, of these

5425 only 933 actually remove the code smell from the affected

class (7% of total operations) and 895 are attributable to only four

code smells (i.e., Blob, Long Method, Spaghetti Code, and Feature

Envy). Thus, not all code smells are likely to trigger refactoring

activities.

In summary, such results suggest that (i) more often than not

refactoring actions are not a direct consequence of worrisome met-

ric profiles or of the presence of code smells, but rather driven by a

general need for improving maintainability, and (ii) refactorings are

mainly attributable to a subset of known smells. For all these reasons,

the refactoring recommendation tools should not only base their sug-

gestions on code characteristics, but they should consider the devel-

oper’s point-of-view in order to propose meaningful suggestions of

classes to be refactored.

The paper is organized as follows. Section 2 describes the design

of our empirical study, while Section 3 reports and discusses the ob-

tained results. Section 4 analyzes and discusses the threats that could

affect the results of our study. After a discussion of the related litera-

ture (Section 5), Section 6 concludes the paper.

2. Empirical study design

The goal of the study is to analyze refactoring operations occurring

over the history of a software project, with the purpose of understand-

ing (i) if quality metrics and code smells presence provide indications

on which code components are more/less likely of being refactored;

and (ii) as a consequence, to what extent are refactoring operations

effective in removing code smells from source code. The object sys-

tems, the tools, and the raw data are available for replication in our

online appendix.4

2.1. Context and research questions

The study aims at addressing the following research questions:

• RQ1: Are refactoring operations performed on classes having a

low-level of maintainability as indicated by quality metrics?

4 http://dx.doi.org/10.6084/m9.figshare.1207916 .

• RQ2: To what extent are refactoring operations (i) executed on

classes exhibiting code smells and (ii) able to remove code smells?

The context of the study consists of 63 releases of three Java open

source projects, namely Apache Ant, ArgoUML, and Xerces-J. Apache

Ant is a build tool and library specifically conceived for Java appli-

cations (though it can be used for other purposes). ArgoUML is an

open source UML modeler, while Xerces-J is a XML parser for Java.

Although this looks a relatively small context (three projects only),

such a choice has been necessary to allow us manually validating

the detected refactoring and code smells, as detailed below. Table 1

reports characteristics of the analyzed systems, namely analyzed re-

leases, number of analyzed releases, and size range (in terms of KLOC

and # of classes).

2.2. Study variables and data extraction

The dependent variables considered in our study, for all the re-

search questions, are the refactoring operations (of different types)

being observed across releases of different programs. The indepen-

dent variables are the factors we relate to such observed refactoring

and namely:

1. For RQ1, a series of quality metrics (described below).

2. For RQ2, the presence of code smells (of different types) in soft-

ware releases.

To answer our research questions, we first need to detect refac-

torings over the evolution history of the studied systems. To this aim

we use an existing tool, Ref-Finder (Prete et al., 2010), to detect refac-

toring operations performed between each subsequent couples of re-

leases of each system. Ref-Finder has been implemented as an Eclipse

plug-in and it is able to detect 63 different kinds of refactoring oper-

ations. In a case study conducted on three open source systems, Ref-

Finder was able to detect refactoring operations with an average re-

call of 95% and an average precision of 79% (Prete et al., 2010). Even if

the accuracy of such a tool is quite high, we tried to (at least) mitigate

problems related to false positives (precision) through manual vali-

dation of the refactoring operations identified by Ref-Finder. Specifi-

cally, each refactoring operation identified by the tool was manually

analyzed through source code inspection by two Master’s students

from the University of Salerno. The students individually validated

each of the proposed refactoring operations.

Once students validated the refactoring operations, they per-

formed an open discussion with two of the authors of this paper

to solve conflicts and reach a consensus on the refactoring opera-

tions analyzed, classifying them as true positive or false positive. Of

the 15,008 refactoring operations detected by Ref-Finder, 12,922 op-

erations have been manually classified as actual refactoring opera-

tions, producing as output a set of triples (relj, refk, C), where relj in-

dicates the release number, refk the kind of refactoring occurred, and

C is the set of refactored classes. Table 2 reports the number of refac-

toring operations (as well as the number of different types of refac-

torings) identified on the three systems after the manual validation.

While the extracted refactoring operations are needed to answer all

our research questions, in the following we detail on data collection

activities made to specifically answer each research question.

http://dx.doi.org/10.6084/m9.figshare.1207916


Download English Version:

https://daneshyari.com/en/article/459289

Download Persian Version:

https://daneshyari.com/article/459289

Daneshyari.com

https://daneshyari.com/en/article/459289
https://daneshyari.com/article/459289
https://daneshyari.com

