
The Journal of Systems and Software 107 (2015) 142–157

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An automated approach for noise identification to assist software

architecture recovery techniques

Eleni Constantinou a,∗, George Kakarontzas a,b, Ioannis Stamelos a

a Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
b Computer Science and Engineering Department, Technological Educational Institute of Thessaly, 41110 Larissa, Greece

a r t i c l e i n f o

Article history:

Received 11 September 2014

Revised 28 April 2015

Accepted 27 May 2015

Available online 5 June 2015

Keywords:

Noise identification

Omnipresent classes

Software architecture recovery

a b s t r a c t

Software systems’ concrete architecture often drifts from the intended architecture throughout their evo-

lution. Program comprehension activities, like software architecture recovery, become very demanding, es-

pecially for large and complex systems due to the existence of noise, which is created by omnipresent and

utility classes that obscure the system structure. Omnipresent classes represent crosscutting concerns, utili-

ties or elementary domain concepts. The identification and filtering of noise is a necessary preprocessing step

before attempting program comprehension techniques, especially for undocumented systems. In this paper,

we propose an automated methodology for noise identification. Our methodology is based on the notion

that noisy classes are widely used in a system, directly or indirectly. We combine classes’ usage significance

with their participation in the system’s subgraphs, in order to identify the classes that are persistently used.

Usage significance is measured according to Component Rank, a well-established metric in the literature,

which ranks software artifacts according to their usage significance. The experimental results show that the

proposed methodology successfully captures classes that produce noise and improves the results of existing

algorithms for software systems’ architectural decomposition.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software systems’ intended architecture deviates from the imple-

mented architecture throughout their evolution over time (Ducasse

and Pollet, 2009). Additionally, architectural or implementation doc-

umentation is often outdated or missing in several important cate-

gories of software systems, e.g. legacy systems, open source software

systems, etc (Shtern and Tzerpos, 2012). Program comprehension

techniques, like Software Architecture Reconstruction (SAR), mainly

draw information about software systems from human experts and

source code artifacts (Pollet et al., 2007). However, human expertise

is not always available since the comprehension of large and complex

software systems lacking adequate documentation is time consum-

ing (Chardigny and Seriai, 2010). Source code artifacts analysis is pre-

dominant in program comprehension techniques, where the concrete

architecture derived from the source code is utilized to gain knowl-

edge of the intended or conceptual architecture of a software system

(Pollet et al., 2007; Maqbool and Babri, 2007).

Program comprehension techniques require a preprocessing step

to filter out noise (Maqbool and Babri, 2007). Noise in software

∗ Corresponding author.

E-mail addresses: econst@csd.auth.gr (E. Constantinou), gkakaron@teilar.gr

(G. Kakarontzas), stamelos@csd.auth.gr (I. Stamelos).

systems is produced by classes that are intensively utilized either

system-wise, i.e. omnipresent classes, or by their local neighborhood.

Omnipresent classes represent crosscutting concerns, utility func-

tionalities or elementary domain concepts such as entities. Their ba-

sic attributes are that they are called by a vast number of classes in the

system (Maqbool and Babri, 2007; Mancoridis et al., 1999; Mitchell

and Mancoridis, 2006; Muller and Uhl, 1990; Muller et al., 1993; Luo

et al., 2005; Wen and Tzerpos, 2005; Zhang et al., 2010), directly or

indirectly, and they are usually located in the bottom architectural

layers. However, they are not very important from an architectural

point of view in SAR activities, since they do not necessarily represent

architecturally significant decisions (Lungu et al., 2014). Although en-

tity classes are significant for comprehending software systems, in

SAR they can produce noise in the system structure since they are

used by a significant proportion of system’s classes. Intensively used

classes do not positively contribute to the clustering methodologies

of SAR (Maqbool and Babri, 2007), because their pervasive presence

in the systems induces considerable noise. Consequently, identifying

and removing classes that produce noise in a software system is an

important preparatory procedure before attempting the comprehen-

sion of architecturally significant elements, since their presence in-

creases the gap between implementation and design (Pirzadeh et al.,

2009). Additionally, the authors of a recent feature location taxon-

omy and survey (Dit et al., 2013) observe that setting up benchmark

http://dx.doi.org/10.1016/j.jss.2015.05.065

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.05.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.05.065&domain=pdf
mailto:econst@csd.auth.gr
mailto:gkakaron@teilar.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.jss.2015.05.065


E. Constantinou et al. / The Journal of Systems and Software 107 (2015) 142–157 143

systems that can be used in several research papers is challenging,

partially because benchmarks may not be 100% accurate since they

might contain noise (i.e. program elements not related to the fea-

ture). One of our contributions is that we can assist in the exclusion

of noise as a preparatory procedure prior to modularization or fea-

ture location processes and not only to SAR techniques. In general,

any approach attempting to comprehend a system for the identifi-

cation of higher-level constructs, such as architecturally significant

program elements or program elements related to a feature, should

first remove elements that represent noise in the system (Maqbool

and Babri, 2007; Muller and Uhl, 1990; Muller et al., 1993).

In this paper we propose an automated methodology to identify

classes producing noise to the structure of software systems. Our

methodology initially performs static analysis to measure classes’ us-

age significance. The metric used to measure classes’ significance is

the Component Rank (CR) model, presented by Inoue et al. (2005). CR

model is based on an algorithm that iteratively recomputes classes’

weights according to the use relationships among them. In a follow-

ing step, we find the shortest paths between classes’ pairs and uti-

lize the usage significance values of the participant nodes in order

to quantify the overall usage of each class in the system. The ob-

tained weights for the system’s paths are used to measure classes’

significance in the graph according to their usage and finally, iden-

tify noise classes. We evaluate the proposed methodology on three

Java applications, where we validate the structural attributes of Noise

classes and compare the results with related approaches of the liter-

ature, i.e. omnipresent detection of the Bunch tool (Mancoridis et al.,

1999; Mitchell and Mancoridis, 2006) and the approach of Zhang

et al. (2010), based on which we further discuss our findings.

The contributions of our methodology are as follows:

• We introduce a fully automated methodology and therefore we

minimize the effort required by software engineers for the de-

tection of classes that cause noise in the system structure.
• We improve the applicability of the noise detection approaches

by not requiring from software engineers to define the thresh-

old value.
• We consider the usage intensity of a class in the system, which

does not only depend on the number of incident edges, but is a

combination of the direct and indirect incoming dependencies

with the weights accumulated to them.

The rest of the paper is organized as follows. In Section 2 we

present related work and in Section 3 the proposed methodology is

described in detail. Then, in Section 4 we present the experimental

results and in Section 5 we show the impact of the proposed approach

to SAR techniques. In Section 6 we discuss our findings and in Section

7 we present threats to validity. Finally, in Section 8 we conclude our

main contributions and provide future research directions.

2. Related work

Omnipresent classes were introduced by Muller and Uhl (1990) as

modules referenced by most of the system components. The authors

consider as omnipresent classes those nodes in the system graph that

the number of their direct clients exceeds a threshold Top. They argue

that omnipresent components should be removed with their incident

edges, since they obscure the system structure. In a following work

(Muller et al., 1993), the authors suggest that further inspection of

the items identified as omnipresent is required, since some central

components of the system are also identified as omnipresent.

Mancoridis et al. (1999) cluster software systems to create the sys-

tem decomposition and as a preprocessing step they identify om-

nipresent modules. They divide omnipresent classes in two cate-

gories, direct suppliers and clients, where in the former case the

classes have a vast number of outgoing dependencies and in the lat-

ter case, of incoming dependencies. In order to identify omnipresent

modules with their tool Bunch they specify a threshold, i.e. a mul-

tiple of the average edge in-degree and out-degree of the Module

Dependency Graph (MDG), and automatically create the direct sup-

pliers and clients lists with classes above the threshold. In a following

work (Mitchell and Mancoridis, 2006), they discuss that omnipresent

modules bias the clustering results in a negative way and therefore

exclude them to simplify the graph before applying clustering.

Luo et al. (2005) initially identify omnipresent clusters in order to

remove noise and perform hierarchical system decomposition. They

distinguish three types of omnipresent classes: control, common and

their combination according to their in-degree and out-degree. They

specify a threshold and classes whose in-degree or out-degree is

above the threshold are deemed as omnipresent. Next, they form

clusters according to the class type by including neighbor classes

whose minimal path from/to the omnipresent class is under a user

specified threshold k. Finally, they produce omnipresent clusters by

selecting candidates from clusters according to the maximal value of

the Independency Metric (IM). Zhang et al. (2010) follow a similar

approach to identify and remove omnipresent classes in order to im-

prove the performance of system decomposition. However, they pro-

pose a modification for IM to reduce the impact of the sub-graph size

on the IM value.

Tzerpos and Holt (2000) present a pattern based algorithm,

namely ACDC, to decompose a software system into meaningful par-

titions. In the context of their work, they introduce several subsystem

patterns for the ACDC algorithm. They present the support library

pattern to discover and group the procedures that are accessed by

the majority of the subsystems. They identify classes as omnipresent

when their in-degree is larger than a predefined threshold, i.e. 20.

However, this approach can produce misleading results in cases of

large systems. Wen and Tzerpos (2005) present a set of detection

methods for omnipresent classes by taking into account the subsys-

tem structure when deciding if a class is omnipresent or not. They

define the cluster degree d of classes as the number of clusters that

this class is connected to, excluding its parent cluster. Finally, they

introduce four detection methods, percentile, absolute and normal-

ized cluster degree, and relative degree, related to literature meth-

ods. All detection methods require a threshold in order to conclude

to omnipresent classes. However, the cluster degree calculation re-

quires a clustered decomposition of the system; the authors point out

that they applied their metrics on two systems of known authorita-

tive decomposition. In contrast, our approach does not rely on exist-

ing decompositions, nor the results are prone to the decomposition

used.

Further research related to noise detection involves the identifi-

cation of utilities. Hamou-Lhadj et al. (2005) propose a technique

to distinguish utility components from high-level concepts’ compo-

nents. They consider as utility any element of a program designed for

the developers’ convenience, which is intended to be accessed from

multiple places. They introduce the utilityhood metric U, which is

based on fan-in analysis, and present an algorithm to detect utility

classes. Their utilityhood metric can be adjusted to detect utilities ei-

ther system-wise (omnipresent classes) or for a particular package.

For system utility identification, their metric is defined as the frac-

tion of incoming connections, divided by the size of the system. Their

algorithm initially computes U for each class and considers as utilities

the classes with metric values greater than or equal to a predefined

threshold, which is defined by software engineers. In a following

work, they improve the utilityhood metric in order to depend both on

fan-in and fan-out values (Hamou-Lhadj and Lethbridge, 2006). Al-

though utilityhood metric aims towards utilities, the results include

classes widely used in the system that can contain code related to

system functionality (Dugerdil and Repond, 2010), i.e. a subset of om-

nipresent classes. Patel et al. (2009) decompose software systems and

as a preprocessing step they remove omnipresent classes according to

the approach of Hamou-Lhadj and Lethbridge (2006).



Download English Version:

https://daneshyari.com/en/article/459297

Download Persian Version:

https://daneshyari.com/article/459297

Daneshyari.com

https://daneshyari.com/en/article/459297
https://daneshyari.com/article/459297
https://daneshyari.com

