On the least square-free primitive root modulo p
 CrossMark

Stephen D. Cohen ${ }^{\text {a }}$, Tim Trudgian ${ }^{\mathrm{b}, *, 1}$
${ }^{\text {a }}$ School of Mathematics and Statistics, University of Glasgow, Scotland, United Kingdom
b Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia

A R T I C L E I N F O

Article history:

Received 8 February 2016
Received in revised form 8 June 2016
Accepted 8 June 2016
Available online 2 August 2016
Communicated by David Goss
Keywords:
Character sums
Primitive roots
Square-free integers

A B S T R A C T

Let $g^{\square}(p)$ denote the least square-free primitive root modulo p. We show that $g^{\square}(p)<p^{0.96}$ for all p.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\hat{g}(p)$ denote the least prime primitive root modulo p. By Dirichlet's theorem on primes in arithmetic progressions, it is clear that $\hat{g}(p)$ exists. Nevertheless, it is not known whether $\hat{g}(p)<p$ for all p, or even for all sufficiently large p. The best unconditional result (by Ha [3]) says that $\hat{g}(p) \ll p^{3.1}$. On assuming the Generalised Riemann Hypothesis it is known [7] that $\hat{g}(p) \ll(\log p)^{6+\epsilon}$, and, recently, it was shown in [5] that $\hat{g}(p)<\sqrt{p}-2$ for all $p>2791$.

[^0]In this article we consider the broader (and easier) case of square-free primitive roots. An integer n is said to be square-free if for all primes $l \mid n$ we have $l^{2} \nmid n$. Let $g^{\square}(p)$ denote the least square-free primitive root modulo p, and let $N^{\square}(p, x)$ denote the number of square-free primitive roots modulo p that do not exceed x. Shapiro [6, p. 355] showed that

$$
\begin{equation*}
N^{\square}(p, x)=\frac{\phi(p-1)}{p-1}\left\{\frac{6}{\pi^{2}} x+O\left(2^{\omega(p-1)} p^{1 / 4}(\log p)^{1 / 2} x^{1 / 2}\right)\right\}, \tag{1}
\end{equation*}
$$

where $\omega(n)$ is the number of distinct prime factors of n. This shows that $N^{\square}\left(p, p^{1 / 2+\epsilon}\right)>0$ for any positive ϵ and for all sufficiently large p. Equivalently, this means that $g^{\square}(p) \ll$ $p^{1 / 2+\epsilon}$.

The error term in (1) has been improved by Liu and Zhang [4, Thm 1.1], who showed

$$
\begin{equation*}
N^{\square}(p, x)=\frac{\phi(p-1)}{p-1}\left\{\frac{6}{\pi^{2}} x+O\left(p^{9 / 44+\epsilon} x^{1 / 2+\epsilon}\right)\right\}, \tag{2}
\end{equation*}
$$

whence one has that $g^{\square}(p) \ll p^{9 / 22+\epsilon}$. Instead of focusing on (2), we seek a version of (1) in order to bound $g^{\square}(p)$ explicitly. We do this in the following theorem.

Theorem 1. We have $g^{\square}(p)<p^{0.96}$ for all primes p. In particular all primes p possess a square-free primitive root less than p.

We note that using (1) does not allow one to show that $g^{\square}(p) \ll p^{1 / 2}$. However, based on computational evidence, the bound in (2) and recent work in $[2,5]$ it seems reasonable to extrapolate, as below.

Conjecture 1. For all $p>409$ we have $g^{\square}(p)<\sqrt{p}-2$.
The outline of this paper is as follows. In $\S 2$ we collect the necessary results to make (1) explicit. In $\S 3$ we introduce a sieving inequality. We also carry out some rudimentary computations, which prove Theorem 1. Finally, in $\S 4$ we discuss a related problem on square-full primitive roots. Throughout this article we write $n=\square$ - free to indicate that n is a square-free integer.

2. Preliminary results

The following establishes an indicator function on primitive roots.

$$
f(n):=\frac{\phi(p-1)}{p-1} \sum_{d \mid p-1} \frac{\mu(d)}{\phi(d)} \sum_{\chi \in \Gamma_{d}} \chi(n)= \begin{cases}1 & \text { if } n \text { is a primitive root } \bmod p \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

where $\sum_{\chi \in \Gamma_{d}}$ denotes a sum over all Dirichlet characters modulo p of order d. We therefore have

https://daneshyari.com/en/article/4593112

Download Persian Version:
https://daneshyari.com/article/4593112

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Stephen.Cohen@glasgow.ac.uk (S.D. Cohen), timothy.trudgian@anu.edu.au (T. Trudgian).
 ${ }^{1}$ Supported by Australian Research Council DECRA Grant DE120100173.

