New convolutions for the number of divisors

Cristina Ballantine ${ }^{\text {a,1 }}$, Mircea Merca ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, College of The Holy Cross, Worcester, MA 01610, USA
b Department of Mathematics, University of Craiova, A. I. Cuza 13, Craiova, 200585 Romania

A R T I C L E I N F O

Article history:

Received 2 June 2016
Received in revised form 15 June 2016
Accepted 15 June 2016
Available online 2 August 2016
Communicated by David Goss

MSC:

05A17
05A19
11A25
11P81
11P84

Keywords:

Divisors
Lambert series
Partitions

Abstract

We introduce new convolutions for the number of divisors function. We also provide combinatorial interpretations for some of the convolutions. In addition, we prove arithmetic properties for several restricted partitions functions used in the convolutions.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

The divisors of numbers have been studied from the point of view of partitions of integers for a long time [5]. It is well-know that Euler's partition function $p(n)[1]$ and the sum of divisors function

$$
\sigma(n)=\sum_{d \mid n} d
$$

satisfy common recursive relations with only $p(0)$ different from $\sigma(0)$:

$$
\sum_{k=0}^{\infty}(-1)^{\lceil k / 2\rceil} p\left(n-G_{k}\right)=\delta_{0, n}, \quad \text { with } \quad p(0)=1
$$

and

$$
\sum_{k=0}^{\infty}(-1)^{\lceil k / 2\rceil} \sigma\left(n-G_{k}\right)=0, \quad \text { with } \quad \sigma(0) \text { replaced by } n
$$

where $\delta_{i, j}$ is the Kronecker delta and

$$
\left\{G_{k}\right\}_{k \geqslant 0}=\{0,1,2,5,7,12,15,22,26,35,40,51, \ldots\}
$$

is the sequence of generalized pentagonal numbers, i.e.,

$$
G_{k}=\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{3 k+1}{2}\right\rceil .
$$

We use the established convention $p(k)=\sigma(k)=0$ if $k<0$.
Moreover, there are two relations that combine the functions $p(n)$ and $\sigma(n)$,

$$
\begin{equation*}
n p(n)=\sum_{k=0}^{n} \sigma(k) p(n-k) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(n)=\sum_{k=0}^{\infty}(-1)^{\lceil k / 2\rceil-1} G_{k} p\left(n-G_{k}\right) \tag{2}
\end{equation*}
$$

Note that in (1) and (2), $\sigma(0)=0$. More details about these classical connections between partitions and divisors can be found in [8] and the references therein.

Recently, motivated by these results, Merca [6] proved that the number of divisors function

$$
\tau(n)=\sum_{d \mid n} 1
$$

https://daneshyari.com/en/article/4593113

Download Persian Version:
https://daneshyari.com/article/4593113

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cballant@holycross.edu (C. Ballantine), mircea.merca@profinfo.edu.ro (M. Merca).
 ${ }^{1}$ This work was partially supported by a grant from the Simons Foundation (\#245997 to Cristina Ballantine).

