ELSEVIER

More infinite families of congruences modulo 5 for broken 2-diamond partitions

Ernest X.W. Xia
Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China

A R T I C L E I N F O

Article history:

Received 19 January 2016
Accepted 14 April 2016
Available online 2 June 2016
Communicated by David Goss

MSC:

11P83
05A17
Keywords:
Broken k-diamond partition
Congruence
Theta function

Abstract

The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let $\Delta_{k}(n)$ denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Chan, and Paule and Radu proved some congruences modulo 5 for $\Delta_{2}(n)$. In this paper, we prove several new infinite families of congruences modulo 5 for $\Delta_{2}(n)$ by using an identity due to Newman. Our results generalize the congruences proved by Paule and Radu.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to prove several new infinite families of congruences modulo 5 for broken 2-diamond partitions, which generalize some congruence results due to Paule and Radu [11].

Let us begin with some notation and terminology on q-series and partitions. We use the standard notation

[^0]$$
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$
and often write
$$
\left(a_{1}, a_{2}, \ldots, a_{n} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \cdots\left(a_{n} ; q\right)_{\infty}
$$

Recall that the Ramanujan theta function $f(a, b)$ is defined by

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \tag{1.1}
\end{equation*}
$$

where $|a b|<1$. The Jacobi triple product identity can be restated as

$$
\begin{equation*}
f(a, b)=(-a,-b, a b ; a b)_{\infty} \tag{1.2}
\end{equation*}
$$

One special case of (1.1) is defined by

$$
\begin{equation*}
\psi(q)=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} \tag{1.3}
\end{equation*}
$$

By (1.1), (1.2) and (1.3),

$$
\begin{equation*}
\psi(q)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}} \tag{1.4}
\end{equation*}
$$

A combinatorial study guided by MacMahon's Partition Analysis led Andrews and Paule [2] to the construction of a new class of directed graphs called broken k-diamond partitions. Let $\Delta_{k}(n)$ denote the number of broken k-diamond partitions of n for a fixed positive integer k. Andrews and Paule [2] established the following generating function of $\Delta_{k}(n)$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \Delta_{k}(n) q^{n}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{2 k+1} ; q^{2 k+1}\right)_{\infty}}{(q ; q)_{\infty}^{3}\left(q^{4 k+2} ; q^{4 k+2}\right)_{\infty}} \tag{1.5}
\end{equation*}
$$

Employing generating function manipulations, Andrews and Paule [2] proved that for all integers $n \geq 0$,

$$
\Delta_{1}(2 n+1) \equiv 0 \quad(\bmod 3)
$$

Since then, a number of congruences satisfied by $\Delta_{k}(n)$ for small values of k have been proved. See, for example, Chan [4], Chen, Fan and Yu [5], Hirschhorn and Sellers [6], Lin [7], Lin and Wang [8], Paule and Radu [11], Radu and Sellers [12-14], Wang and Yao [18], Xia [15, 16] and Yao [17].

https://daneshyari.com/en/article/4593125

Download Persian Version:

https://daneshyari.com/article/4593125

Daneshyari.com

[^0]: E-mail address: ernestxwxia@163.com.

