# New properties of the Lerch's transcendent 

E.M. Ferreira ${ }^{\text {a }}$, A.K. Kohara ${ }^{\text {a }}$, J. Sesma ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972,<br>Rio de Janeiro, Brazil<br>b Departamento de Física Teórica, Facultad de Ciencias, 50009, Zaragoza, Spain

## A R T I C L E I N F O

## Article history:

Received 29 June 2016
Accepted 16 August 2016
Available online 8 October 2016
Communicated by D. Goss

## MSC:

11M35
30E15
Keywords:
Lerch's transcendent
Hurwitz zeta function
Polylogarithms

## A B S T R A C T

A new representation of the Lerch's transcendent $\Phi(z, s, a)$, valid for positive integer $s=n=1,2, \ldots$ and for $z$ and $a$ belonging to certain regions of the complex plane, is presented. It allows to write an equation relating $\Phi(z, n, a)$ and $\Phi(1 / z, n, 1-a)$, which in turn provides an expansion of $\Phi(z, n, a)$ as a power series of $1 / z$, convergent for $|z|>1$.
© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

The Lerch's transcendent $\Phi(z, s, a)$, also known as Hurwitz-Lerch zeta function, is defined by its series representation [2, Sec. 1.11, Eq. (1)], [9, Eq. 25.14.1]

$$
\begin{equation*}
\Phi(z, s, a)=\sum_{m=0}^{\infty} \frac{z^{m}}{(a+m)^{s}}, \tag{1}
\end{equation*}
$$

[^0]provided
\[

$$
\begin{equation*}
a \neq 0,-1,-2, \ldots ; \quad|z|<1 ; \quad|z|=1, \quad \Re s>1 \tag{2}
\end{equation*}
$$

\]

The restriction on the values of $a$ guarantees that all terms of the series in the right-hand side are finite. Obviously, the series is convergent if $|z|<1$, independently of the value of $s$, or if $|z|=1$ and $\Re s>1$. For other values of its arguments, $\Phi(z, s, a)$ is defined by analytic continuation. This is achieved by means of integral representations, the most common of them being [9, Eq. 25.14.5]

$$
\begin{equation*}
\Phi(z, s, a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1} e^{-a t}}{1-z e^{-t}} d t \tag{3}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\Re s>0, \quad \Re a>0, \quad z \in \mathbb{C} \backslash[1, \infty) \tag{4}
\end{equation*}
$$

The conditions imposed on $a$ and $z$ ensure the regularity of the integrand in the righthand side of (3). The restriction on $s$ allows to prove the equivalence of the representations (1) and (3) in their common region of validity (see, for instance, [6, Lemmas 2.1 and 2.2]). A thorough discussion of the analytic continuation of $\Phi$, as a multivalued function of three complex variables, and of its "singular strata" can be found in a recent paper by Lagarias and $\mathrm{Li}[7]$, where the monodromy functions describing the multivaluedness are computed. (Be aware that, in the notation used in Ref. [7], the two first arguments of $\Phi$ are transposed, as compared with the notation used in Refs. [2] and [9].)

In the course of a research on the use of dispersion relations in the study of elementary particles $[4,5]$, we have encountered what we believe to be a new representation of the Lerch's transcendent $\Phi(z, s, a)$ for positive integer values of the second argument, $s=n=$ $1,2, \ldots$. This is our first result, presented as Theorem 1 in Sec. 2. Such a representation allows to unveil, as a second result reported in Sec. 3 as Theorem 2, a property of $\Phi$ not noticed before. This property, in turn, provides our third result, expressed in Corollary 1 of Sec. 4, consisting of an expansion of $\Phi(z, n, a)$ in powers of $1 / z$, convergent for $|z|>1$. The proofs of the three results, followed by pertinent remarks, are presented in Secs. 2, 3 and 4, respectively. Some comments are added in Sec. 5.

## 2. A new representation

Let $\mathbf{D}$ denote the open unit disc in the complex plane, cut along the negative real semiaxis, that is,

$$
\begin{equation*}
z \in \mathbf{D} \quad \Rightarrow \quad z \in \mathbb{C}, \quad 0<|z|<1, \quad-\pi<\arg (z)<\pi \tag{5}
\end{equation*}
$$

# https://daneshyari.com/en/article/4593134 

Download Persian Version:

## https://daneshyari.com/article/4593134

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: erasmo@if.ufrj.br (E.M. Ferreira), kendi@if.ufrj.br (A.K. Kohara), javier@unizar.es (J. Sesma).

