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A covering number is a positive integer L such that a covering 
system of the integers can be constructed with distinct moduli 
that are divisors d > 1 of L. If no proper divisor of L is a cov-
ering number, then L is called primitive. In 2007, Zhi-Wei Sun 
gave sufficient conditions for the existence of infinitely many 
covering numbers, and he conjectured that these conditions 
were also necessary for a covering number to be primitive. 
Recently, the second author and Daniel White have shown 
that Sun’s conjecture is false by finding infinitely many coun-
terexamples. In this article, we give necessary and sufficient 
conditions for certain positive integers to be primitive cov-
ering numbers. We use these results to answer a question of 
Sun, and to prove the existence of infinitely many previously-
unknown primitive covering numbers. We also show, for each 
of these new primitive covering numbers L, that a covering 
can be constructed with distinct moduli using only a proper 
subset of the divisors d > 1 of L as moduli.
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1. Introduction

A covering system, or simply a covering, of the integers is a finite collection of congru-
ences x ≡ ri (mod mi), such that every integer satisfies at least one of these congruences. 
The concept of a covering is originally due to Erdős [3].

In 2007, Zhi-Wei Sun [8] introduced the notion of a primitive covering number. A pos-
itive integer L is called a covering number if there exists a covering of the integers where 
the moduli are distinct divisors d > 1 of L. Clearly, if L is a covering number, then any 
multiple of L is a covering number. A covering number L is called a primitive covering 
number if no proper divisor of L is a covering number. The following theorem, due to 
Sun [8], gives sufficient conditions for a positive integer to be a covering number.

Theorem 1.1. Let p1, p2, . . . , pr be distinct primes, and let α1, α2, . . . , αr be positive 
integers. Suppose that

∏
0<t<s

(αt + 1) ≥ ps − 1 + δr,s, for all s = 1, 2, . . . , r, (1.1)

where δr,s is Kronecker’s delta, and the empty product 
∏

0<t<1(αt +1) is defined to be 1. 
Then pα1

1 pα2
2 · · · pαr

r is a covering number.

The next theorem, also due to Sun [8], gives sufficient conditions for a positive integer 
to be a primitive covering number.

Theorem 1.2. Let r > 1 and let 2 = p1 < p2 < · · · < pr be primes. Suppose further that 
pt+1 ≡ 1 (mod pt − 1) for all 0 < t < r − 1, and pr ≥ (pr−1 − 2)(pr−1 − 3). Then

p
p2−1
p1−1−1
1 . . . p

pr−1−1
pr−2−1−1
r−2 p

⌊
pr−1

pr−1−1

⌋
r−1 pr

is a primitive covering number, where �x� denotes the greatest integer less than or equal 
to x.

Theorem 1.2 produces an infinite set of primitive covering numbers, each of which 
satisfies (1.1). We observe that all primitive covering numbers pα1

1 pα2
2 · · · pαr

r produced 
by Theorem 1.2 have α1 = p2 − 2 and αr = 1.

Concerning Theorem 1.1, Sun [8] made the following conjecture.

Conjecture 1.3. Any primitive covering number can be written as pa1
1 · · · par

r , where 
p1, . . . , pr are distinct primes and a1, . . . , ar are positive integers that satisfy (1.1).

The second author and Daniel White have shown recently that Conjecture 1.3 is false 
by establishing the following theorem [5]. We let qn denote the nth prime number.
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