New primitive covering numbers and their properties

Joshua Harrington ${ }^{\text {a }}$, Lenny Jones ${ }^{\text {b,* }}$, Tristan Phillips ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Cedar Crest College, Allentown, PA 18104, USA
${ }^{\text {b }}$ Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA

A R T I C L E I N F O

Article history:

Received 3 June 2016
Received in revised form 30 August 2016
Accepted 30 August 2016
Available online 8 October 2016
Communicated by D. Goss

MSC:

primary 11B25, 11A07, 05A99
Keywords:
Covering system
Covering number
Primitive covering number
Congruence

Abstract

A covering number is a positive integer L such that a covering system of the integers can be constructed with distinct moduli that are divisors $d>1$ of L. If no proper divisor of L is a covering number, then L is called primitive. In 2007, Zhi-Wei Sun gave sufficient conditions for the existence of infinitely many covering numbers, and he conjectured that these conditions were also necessary for a covering number to be primitive. Recently, the second author and Daniel White have shown that Sun's conjecture is false by finding infinitely many counterexamples. In this article, we give necessary and sufficient conditions for certain positive integers to be primitive covering numbers. We use these results to answer a question of Sun, and to prove the existence of infinitely many previouslyunknown primitive covering numbers. We also show, for each of these new primitive covering numbers L, that a covering can be constructed with distinct moduli using only a proper subset of the divisors $d>1$ of L as moduli.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A covering system, or simply a covering, of the integers is a finite collection of congruences $x \equiv r_{i}\left(\bmod m_{i}\right)$, such that every integer satisfies at least one of these congruences. The concept of a covering is originally due to Erdős [3].

In 2007, Zhi-Wei Sun [8] introduced the notion of a primitive covering number. A positive integer L is called a covering number if there exists a covering of the integers where the moduli are distinct divisors $d>1$ of L. Clearly, if L is a covering number, then any multiple of L is a covering number. A covering number L is called a primitive covering number if no proper divisor of L is a covering number. The following theorem, due to Sun [8], gives sufficient conditions for a positive integer to be a covering number.

Theorem 1.1. Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive integers. Suppose that

$$
\begin{equation*}
\prod_{0<t<s}\left(\alpha_{t}+1\right) \geq p_{s}-1+\delta_{r, s}, \quad \text { for all } s=1,2, \ldots, r \tag{1.1}
\end{equation*}
$$

where $\delta_{r, s}$ is Kronecker's delta, and the empty product $\prod_{0<t<1}\left(\alpha_{t}+1\right)$ is defined to be 1 . Then $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is a covering number.

The next theorem, also due to Sun [8], gives sufficient conditions for a positive integer to be a primitive covering number.

Theorem 1.2. Let $r>1$ and let $2=p_{1}<p_{2}<\cdots<p_{r}$ be primes. Suppose further that $p_{t+1} \equiv 1\left(\bmod p_{t}-1\right)$ for all $0<t<r-1$, and $p_{r} \geq\left(p_{r-1}-2\right)\left(p_{r-1}-3\right)$. Then

$$
p_{1}^{\frac{p_{2}-1}{p_{1}-1}-1} \ldots p_{r-2}^{\frac{p_{r-1}-1}{p_{r}-2-1}-1} p_{r-1}^{\left\lfloor\frac{p_{r}-1}{p_{r}-1-1}\right\rfloor} p_{r}
$$

is a primitive covering number, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.

Theorem 1.2 produces an infinite set of primitive covering numbers, each of which satisfies (1.1). We observe that all primitive covering numbers $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ produced by Theorem 1.2 have $\alpha_{1}=p_{2}-2$ and $\alpha_{r}=1$.

Concerning Theorem 1.1, Sun [8] made the following conjecture.
Conjecture 1.3. Any primitive covering number can be written as $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes and a_{1}, \ldots, a_{r} are positive integers that satisfy (1.1).

The second author and Daniel White have shown recently that Conjecture 1.3 is false by establishing the following theorem [5]. We let q_{n} denote the nth prime number.

https://daneshyari.com/en/article/4593142

Download Persian Version:

https://daneshyari.com/article/4593142

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Joshua.Harrington@cedarcrest.edu (J. Harrington), lkjone@ship.edu (L. Jones), tp7924@ship.edu (T. Phillips).

