Generalized Dedekind sums and equidistribution mod 1

Claire Burrin
ETH Zürich, Dept. Mathematik, Rämistrasse 101, 8092 Zürich, Switzerland

A R T I C L E I N F O

Article history:

Received 5 January 2016
Received in revised form 25 August 2016
Accepted 25 August 2016
Available online 8 October 2016
Communicated by D. Goss

Keywords:

Automorphic forms
Dedekind eta function, Dedekind
sums
Kloosterman sums
Fuchsian group
Equidistribution

Abstract

Dedekind sums are well-studied arithmetic sums, with values uniformly distributed mod 1 . Based on their relation to certain modular forms, Dedekind sums may be defined as functions on the cusp set of $\mathrm{SL}(2, \mathbb{Z})$. We present a compatible notion of Dedekind sums, which we name Dedekind symbols, for any non-cocompact lattice $\Gamma<\mathrm{SL}(2, \mathbb{R})$, and prove the corresponding equidistribution mod 1 result. The latter part builds up on a paper of Vardi, who first connected exponential sums of Dedekind sums to Kloosterman sums.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we introduce a function for non-cocompact lattices of $\operatorname{SL}(2, \mathbb{R})$ that relates to, and actually generalizes, the classical Dedekind sums

$$
s(a ; c)=\sum_{n=1}^{c-1}\left(\left(\frac{n}{c}\right)\right)\left(\left(\frac{n a}{c}\right)\right), \quad(c \in \mathbb{N}, a \in \mathbb{Z},(a, c)=1)
$$

[^0]where
\[

x \mapsto((x)):=\left\{$$
\begin{array}{ll}
\{x\}-\frac{1}{2} & x \notin \mathbb{Z} \\
0 & x \in \mathbb{Z}
\end{array}
$$ \quad(\{x\}=fractional part of x \in \mathbb{R})\right.
\]

is the odd and periodic "sawtooth" function of expectancy zero.
There is a ubiquitous character to the Dedekind sums, as they appear in a wide range of contexts. The name alone hinges on their relation to the logarithm of the Dedekind η-function

$$
\eta(z)=e\left(\frac{z}{24}\right) \prod_{n \geq 1}(1-e(n z)) \quad\left(e(z)=e^{2 \pi i z}\right)
$$

defined on the upper half-plane \mathbb{H}, a classical player in the theories of modular forms, elliptic curves, and theta functions. More precisely, for every $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$,

$$
\begin{equation*}
\log \eta(\gamma z)-\log \eta(z)=\frac{1}{2}(\operatorname{sign}(c))^{2} \log \left(\frac{c z+d}{i \operatorname{sign}(c)}\right)+\frac{\pi i}{12} \Phi(\gamma) \tag{1.1}
\end{equation*}
$$

where the defect $\Phi(\gamma)$ arising from the ambiguity of the principal branch of the logarithm is given by

$$
\Phi(\gamma)= \begin{cases}b / d & c=0 \tag{1.2}\\ \frac{a+d}{c}-12 \operatorname{sign}(c) s(a ;|c|) & c \neq 0\end{cases}
$$

While this is not obvious at first glance, the values of Φ are always integers. The latter fact, as many other fundamental properties pertaining to Dedekind sums, may be found in the monograph [RadG72]. Dedekind's original proof of the transformation formula (1.1) is of analytic nature, but it can also be deduced by purely topological arguments. Atiyah [Ati87] discusses this approach and offers an overview of the appearance of $\log \eta$ and the Dedekind sums in various contexts of number theory, topology and geometry, exhibiting no less than seven equivalent characterizations of $\log \eta$ across these different fields!

An alternative presentation of the Dedekind sums consists in defining $s(a ; c)$ as a function on the cusp set of $\operatorname{SL}(2, \mathbb{Z})$, which can be identified with the extended rational line $\mathbb{Q} \cup\{\infty\}$. This identification can then be exploited to study some of their properties via continued fraction expansions, as is done in [KM94]. We propose a modified construction. Let Γ_{∞} denote the stabilizer subgroup of $\Gamma:=\mathrm{SL}(2, \mathbb{Z})$ at ∞, that is,

$$
\Gamma_{\infty}=\left\{\left(\begin{array}{ll}
* & * \\
& *
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})\right\}= \pm\left(\begin{array}{cc}
1 & \mathbb{Z} \\
& 1
\end{array}\right)
$$

There is a one-to-one correspondence between the cusp set of Γ, i.e. $\{\gamma(\infty): \gamma \in \Gamma\}$ and the quotient Γ / Γ_{∞}. We can thus express (signed) Dedekind sums via the assignment

https://daneshyari.com/en/article/4593147

Download Persian Version
https://daneshyari.com/article/4593147

Daneshyari.com

[^0]: E-mail address: claire.burrin@math.ethz.ch.

