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minimum distance of projective Reed—Muller-type codes over finite fields. This gives
an algebraic formulation of the minimum distance of a projective Reed—Muller-type
code in terms of the algebraic invariants and structure of the underlying vanishing

MSC:- ideal. Then we give a method, based on Grobner bases and Hilbert functions, to
Primary: 13P25; secondary: 14G50; find lower bounds for the minimum distance of certain Reed—Muller-type codes.
94B27; 11T71 Finally we show explicit upper bounds for the number of zeros of polynomials in a

projective nested cartesian set and give some support to a conjecture of Carvalho,
Lopez-Neumann and Lépez.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let S = Klti,...,ts] = ®32,Sq be a polynomial ring over a field K with the standard grading and let
I # (0) be a graded ideal of S of Krull dimension k. The Hilbert function of S/I is:

H[(d) = dimK(Sd/Id), d:0,1,2,...,

where I; = I'NSy. By a theorem of Hilbert, there is a unique polynomial h;(z) € Q[x] of degree k — 1 such
that Hy(d) = hy(d) for d > 0. The degree of the zero polynomial is —1.
The degree or multiplicity of S/I is the positive integer

(k — D! limg_yo0 Hy(d)/d*=1 if k> 1,

4e8(5/1) =\ G (/1) it & = 0.
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Let Fy be the set of all zero-divisors of S/I not in I of degree d > 0:

Fo:={feSalf &1, (I:f) #1},

where (I: f) = {h € S| hf € I} is a quotient ideal. Notice that Fy = 0.
The main object of study here is the function §;: N — Z given by
1(d) i { deg(8/1) — max{deg(S/(I, )| f € Fa} if Fa0,
deg(S/I) if Fq=0.

We call 87 the minimum distance function of I. If I is a prime ideal, then Fy = @) for all d > 0 and §;(d) =
deg(S/TI). We show that §; generalizes the minimum distance function of projective Reed—Muller-type codes
over finite fields (Theorem 4.7). This abstract algebraic formulation of the minimum distance gives a new
tool to study these type of linear codes.

To compute §;(d) is a difficult problem. For certain family of ideals we will give lower bounds for d;(d)
which are easier to compute.

Fix a monomial order < on S. Let A~ (I) be the footprint of S/I consisting of all the standard monomials
of S/I, with respect to <, and let G = {¢1,...,9-} be a Grobner basis of I. Then AL(I) is the set of
all monomials of S that are not a multiple of any of the leading monomials of gq,...,g, (Lemma 2.5).
A polynomial f is called standard if f # 0 and f is a K-linear combination of standard monomials.

FAL(I)NSg = {t,...,t%} and F<qg = {f=>, \t% | f#0, \; € K, (I: f) # I}, then using the
division algorithm [4, Theorem 3, p. 63] we can write:

61(d) = deg(S/I) — max{deg(5/(, f))| f € Fa}
= deg(5/1) — max{deg(S/(L, f))| f € F<.a}-

Notice that Fy # 0 if and only if F. 4 # 0. If K = F, is a finite field, then the number of standard
polynomials of degree d is n? — 1, where n is the number of standard monomials of degree d. Hence, we can
compute dy(d) for small values of n and ¢ (Examples 7.1 and 7.2).

Upper bounds for §7(d) can be obtained by fixing a subset .7-"'<’d of F. ¢ and computing

d7(d) = deg(S/I) — max{deg(S/(I, )| f € FL 4} = d:1(d).

Typically one uses F., ;= {f =>_, A\t | f #0, N\; € {0, 1}, (I: f) # I} or a subset of it.
Lower bounds for d;(d) are harder to find. Thus, we seek to estimate d;(d) from below. So, with this in
mind, we introduce the footprint function of I:

deg(S/1) if Ax(I)a

fp, (d) = {degwm - max{des(S/ ()¢ ¢ € A-(Da} 11 A<(Da 2D
where ins(I) = (in<(g1),...,in<(gr)) is the initial ideal of I, in4(g;) is the initial monomial of g; for
i=1,...,s,and Ac(I)g = A<(I)N Sy

The contents of this paper are as follows. In Section 2 we present some of the results and terminology
that will be needed throughout the paper.

Some of our results rely on a degree formula to compute the number of zeros that a homogeneous
polynomial has in any given finite set of points in a projective space (Lemma 3.2).

In Section 4 we study é; and present an alternative formula for ¢y, pointed out to us by Vasconcelos,
valid for unmixed graded ideals (Theorem 4.4). If F4 # () for d > 1 and [ is unmixed, then, by Lemma 4.1,
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