Minimum distance functions of graded ideals and Reed-Muller-type codes *

José Martínez-Bernal, Yuriko Pitones, Rafael H. Villarreal*
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 Mexico City, D.F., Mexico

A R T I C L E I N F O

Article history:

Received 16 December 2015
Received in revised form 7 June 2016
Available online 9 August 2016
Communicated by A.V. Geramita
$M S C$:
Primary: 13P25; secondary: 14G50; 94B27; 11T71

Abstract

We introduce and study the minimum distance function of a graded ideal in a polynomial ring with coefficients in a field, and show that it generalizes the minimum distance of projective Reed-Muller-type codes over finite fields. This gives an algebraic formulation of the minimum distance of a projective Reed-Muller-type code in terms of the algebraic invariants and structure of the underlying vanishing ideal. Then we give a method, based on Gröbner bases and Hilbert functions, to find lower bounds for the minimum distance of certain Reed-Muller-type codes. Finally we show explicit upper bounds for the number of zeros of polynomials in a projective nested cartesian set and give some support to a conjecture of Carvalho, Lopez-Neumann and López.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $S=K\left[t_{1}, \ldots, t_{s}\right]=\oplus_{d=0}^{\infty} S_{d}$ be a polynomial ring over a field K with the standard grading and let $I \neq(0)$ be a graded ideal of S of Krull dimension k. The Hilbert function of S / I is:

$$
H_{I}(d):=\operatorname{dim}_{K}\left(S_{d} / I_{d}\right), \quad d=0,1,2, \ldots,
$$

where $I_{d}=I \cap S_{d}$. By a theorem of Hilbert, there is a unique polynomial $h_{I}(x) \in \mathbb{Q}[x]$ of degree $k-1$ such that $H_{I}(d)=h_{I}(d)$ for $d \gg 0$. The degree of the zero polynomial is -1 .

The degree or multiplicity of S / I is the positive integer

$$
\operatorname{deg}(S / I):= \begin{cases}(k-1)!\lim _{d \rightarrow \infty} H_{I}(d) / d^{k-1} & \text { if } k \geq 1 \\ \operatorname{dim}_{K}(S / I) & \text { if } k=0\end{cases}
$$

[^0]Let \mathcal{F}_{d} be the set of all zero-divisors of S / I not in I of degree $d \geq 0$:

$$
\mathcal{F}_{d}:=\left\{f \in S_{d} \mid f \notin I,(I: f) \neq I\right\},
$$

where $(I: f)=\{h \in S \mid h f \in I\}$ is a quotient ideal. Notice that $\mathcal{F}_{0}=\emptyset$.
The main object of study here is the function $\delta_{I}: \mathbb{N} \rightarrow \mathbb{Z}$ given by

$$
\delta_{I}(d):= \begin{cases}\operatorname{deg}(S / I)-\max \left\{\operatorname{deg}(S /(I, f)) \mid f \in \mathcal{F}_{d}\right\} & \text { if } \mathcal{F}_{d} \neq \emptyset, \\ \operatorname{deg}(S / I) & \text { if } \mathcal{F}_{d}=\emptyset\end{cases}
$$

We call δ_{I} the minimum distance function of I. If I is a prime ideal, then $\mathcal{F}_{d}=\emptyset$ for all $d \geq 0$ and $\delta_{I}(d)=$ $\operatorname{deg}(S / I)$. We show that δ_{I} generalizes the minimum distance function of projective Reed-Muller-type codes over finite fields (Theorem 4.7). This abstract algebraic formulation of the minimum distance gives a new tool to study these type of linear codes.

To compute $\delta_{I}(d)$ is a difficult problem. For certain family of ideals we will give lower bounds for $\delta_{I}(d)$ which are easier to compute.

Fix a monomial order \prec on S. Let $\Delta_{\prec}(I)$ be the footprint of S / I consisting of all the standard monomials of S / I, with respect to \prec, and let $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$ be a Gröbner basis of I. Then $\Delta_{\prec}(I)$ is the set of all monomials of S that are not a multiple of any of the leading monomials of g_{1}, \ldots, g_{r} (Lemma 2.5). A polynomial f is called standard if $f \neq 0$ and f is a K-linear combination of standard monomials.

If $\Delta_{\prec}(I) \cap S_{d}=\left\{t^{a_{1}}, \ldots, t^{a_{n}}\right\}$ and $\mathcal{F}_{\prec, d}=\left\{f=\sum_{i} \lambda_{i} t^{a_{i}} \mid f \neq 0, \lambda_{i} \in K,(I: f) \neq I\right\}$, then using the division algorithm [4, Theorem 3, p. 63] we can write:

$$
\begin{aligned}
\delta_{I}(d) & =\operatorname{deg}(S / I)-\max \left\{\operatorname{deg}(S /(I, f)) \mid f \in \mathcal{F}_{d}\right\} \\
& =\operatorname{deg}(S / I)-\max \left\{\operatorname{deg}(S /(I, f)) \mid f \in \mathcal{F}_{\prec, d}\right\} .
\end{aligned}
$$

Notice that $\mathcal{F}_{d} \neq \emptyset$ if and only if $\mathcal{F}_{\prec, d} \neq \emptyset$. If $K=\mathbb{F}_{q}$ is a finite field, then the number of standard polynomials of degree d is $n^{q}-1$, where n is the number of standard monomials of degree d. Hence, we can compute $\delta_{I}(d)$ for small values of n and q (Examples 7.1 and 7.2).

Upper bounds for $\delta_{I}(d)$ can be obtained by fixing a subset $\mathcal{F}_{\prec, d}^{\prime}$ of $\mathcal{F}_{\prec, d}$ and computing

$$
\delta_{I}^{\prime}(d)=\operatorname{deg}(S / I)-\max \left\{\operatorname{deg}(S /(I, f)) \mid f \in \mathcal{F}_{\prec, d}^{\prime}\right\} \geq \delta_{I}(d) .
$$

Typically one uses $\mathcal{F}_{\prec, d}^{\prime}=\left\{f=\sum_{i} \lambda_{i} t^{a_{i}} \mid f \neq 0, \lambda_{i} \in\{0,1\},(I: f) \neq I\right\}$ or a subset of it.
Lower bounds for $\delta_{I}(d)$ are harder to find. Thus, we seek to estimate $\delta_{I}(d)$ from below. So, with this in mind, we introduce the footprint function of I :

$$
\operatorname{fp}_{I}(d)= \begin{cases}\operatorname{deg}(S / I)-\max \left\{\operatorname{deg}\left(S /\left(\operatorname{in}_{\prec}(I), t^{a}\right)\right) \mid t^{a} \in \Delta_{\prec}(I)_{d}\right\} & \text { if } \Delta_{\prec}(I)_{d} \neq \emptyset, \\ \operatorname{deg}(S / I) & \text { if } \Delta_{\prec}(I)_{d}=\emptyset,\end{cases}
$$

where $\operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}\left(g_{1}\right), \ldots, \operatorname{in}_{\prec}\left(g_{r}\right)\right)$ is the initial ideal of $I, \operatorname{in}_{\prec}\left(g_{i}\right)$ is the initial monomial of g_{i} for $i=1, \ldots, s$, and $\Delta_{\prec}(I)_{d}=\Delta_{\prec}(I) \cap S_{d}$.

The contents of this paper are as follows. In Section 2 we present some of the results and terminology that will be needed throughout the paper.

Some of our results rely on a degree formula to compute the number of zeros that a homogeneous polynomial has in any given finite set of points in a projective space (Lemma 3.2).

In Section 4 we study δ_{I} and present an alternative formula for δ_{I}, pointed out to us by Vasconcelos, valid for unmixed graded ideals (Theorem 4.4). If $\mathcal{F}_{d} \neq \emptyset$ for $d \geq 1$ and I is unmixed, then, by Lemma 4.1,

https://daneshyari.com/en/article/4595705

Download Persian Version:

https://daneshyari.com/article/4595705

Daneshyari.com

[^0]: 战 The first and third author were supported by SNI, Mexico. The second author was supported by a CONACYT scholarship from Mexico.

 * Corresponding author.

 E-mail addresses: jmb@math.cinvestav.mx (J. Martínez-Bernal), ypitones@math.cinvestav.mx (Y. Pitones), vila@math.cinvestav.mx (R.H. Villarreal).

