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In each characteristic, there is a canonical homomorphism from the Grothendieck 
ring of varieties to the Grothendieck ring of sets definable in the theory of 
algebraically closed fields. We prove that this homomorphism is an isomorphism 
in characteristic zero. In positive characteristics, we exhibit specific elements in 
the kernel of the corresponding homomorphism of Grothendieck semirings. The 
comparison of these two Grothendieck rings in positive characteristics seems to be an 
open question, related to the difficult problem of cancellativity of the Grothendieck 
semigroup of varieties.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Of the many occurrences of Grothendieck rings in algebraic geometry, there are two closely related ones 
that are the subjects of this note. One is Grothendieck’s original definition: the generators are isomorphism 
classes of varieties, and the relations stem from open-closed decompositions into subvarieties. See Bittner [1]
for a careful discussion and presentation in terms of smooth varieties, and Looijenga [5] for how localizations 
and completions of this ring give rise to motivic measures. The other definition originates in geometric model 
theory, as an instance of the Grothendieck ring of models of a first-order theory. Here, in line with the general 
aims of model theory, the objects of study are formulas of first order logic, and the subsets of an ambient 
model they define. The natural notion of morphism becomes a definable map, and in the Grothendieck 
ring of definable sets, it is natural to permit as relations all definable decompositions. Let us specialize to 
the theory of algebraically closed fields. Thanks to the existence of “elimination of quantifiers” from first 
order formulas, definable sets coincide with the loci of points satisfying a boolean combination of polynomial 
equalities in affine space, i.e. constructible sets. A morphism between constructible sets is a point-map whose 
graph is constructible. In this approach, varieties are seen as ‘point-clouds’ rather than as ringed spaces, 
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and morphisms need not be continuous. See Krajíček and Scanlon [4] for a very readable exposition of this 
Grothendieck ring and some of its uses in logic.

There is a natural homomorphism from the algebraic geometer’s Grothendieck ring of varieties, denoted 
K0(vark) in this paper, to the model theorist’s, that we denote K0(constrk). This homomorphism is an 
isomorphism when k is algebraically closed of characteristic zero. This has been known in the model theory 
community for quite some time, and (as the author has learned after this work was completed) it follows from 
Prop. 3.8, Cor. 3.11 and Prop. 3.13 of Nicaise–Sebag [9]. It may still be useful to give a direct proof of this re-
sult, using only basic properties of separated, quasi-finite morphisms. We actually prove the slightly stronger 
result that the canonical comparison map from the Grothendieck semiring of varieties to the Grothendieck 
semiring of algebraically closed fields, is an isomorphism in characteristic zero. (Recall that a semiring is 
a ring-like structure without the requirement that additive inverses exist. In the Grothendieck semiring of 
varieties resp. algebraically closed fields, any element can be represented as a formal linear combination of 
objects with positive integer coefficients; hence, ultimately, as a single variety resp. constructible set. The 
Grothendieck semiring determines the corresponding Grothendieck ring, but not conversely.)

In positive characteristics, the situation is subtle. Conceptually, the reason for the difference is the absence 
in positive characteristic of generic smoothness. That makes it difficult to ‘spread out’ information given 
on the level of closed points, which is what is available in K0(constrk), to open subsets, and hence make a 
conclusion about K0(vark) using Noetherian induction. We will prove that in positive characteristics, the 
canonical comparison map from the Grothendieck semiring SK0(vark) of varieties to those of constructible 
sets, SK0(constrk), is surjective but not injective. This leaves open the question whether K0(vark) and 
K0(constrk) are isomorphic in positive characteristics too. A resolution of this problem seems to require a 
better understanding of the canonical homomorphism SK0(vark) → K0(vark) in positive characteristics.

Let us give precise definitions. For an algebraically closed field k, let k-variety mean separated, reduced 
scheme of finite type over k. The Grothendieck semiring SK0(vark) is the commutative monoid (i.e. set with 
associative, commutative binary operation, with unit) generated by symbols [X], one for each k-variety X, 
subject to the relations

• [X] = [Y ] if X and Y are isomorphic over k
• [X] = [U ] + [X − U ] for any variety X with open subvariety U and closed complement X − U .

The product of k-varieties induces a commutative semiring structure on SK0(vark). The Grothendieck ring 
K0(vark) is defined analogously, based on the free abelian group generated by the symbols [X].

A constructible subset of a scheme is one that can be written as a finite boolean combination of Zariski-
closed subsets, considered as point-sets. Let constrk be the category whose objects are pairs 〈U, An〉 where 
U is a constructible subset of affine n-space An over k, and where a morphism f : 〈U, An〉 → 〈V, Am〉 is a 
set-theoretic function U → V whose graph is a constructible subset of An+m. The Grothendieck semiring 
SK0(constrk) of constructible sets is the commutative monoid generated by symbols [〈U, An〉] corresponding 
to objects of constrk, subject to the relations

• [〈U, An〉] = [〈V, Am〉] if 〈U, An〉 and 〈V, Am〉 are isomorphic in constrk
• [〈U, An〉] = [〈V, An〉] + [〈U − V, An〉] whenever V ⊆ U .

For a scheme X, write |X| for the set of points of its underlying topological space. Recall that there 
is a canonical (surjective) map |X ×k Y | p−→ |X| × |Y |. For constructible subsets U ⊆ A

n, V ⊆ A
m, 

p−1(U × V ) is a constructible subset of An+m. This turns SK0(constrk) into a semiring. The Grothendieck 
ring K0(constrk) is the commutative ring defined by the same generators and relations.

Given a finite decomposition of a variety X into pairwise disjoint affine constructible sets Ci ⊆ A
di , i ∈ I, 

define
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