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Let k be a differential field of characteristic zero and E be a liouvillian extension 
of k. For any differential subfield K intermediate to E and k, we prove that there 
is an element in the set K − k satisfying a linear homogeneous differential equation 
over k. We apply our results to study liouvillian solutions of first order nonlinear
differential equations and provide generalisations and new proofs for several results 
of M. Singer and M. Rosenlicht on this topic.
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1. Introduction

Throughout this article, we fix a differential field k of characteristic zero. Let E be a differential field 
extension of k and let ′ denote the derivation on E. We say that E is a liouvillian extension1 of k if 
E = k(t1, · · · , tn) and there is a tower of differential fields

k = k0 ⊆ k1 ⊆ · · · ⊆ kn = E

such that for each i, ki = ki−1(ti) and either t′i ∈ ki−1 or t′i/ti ∈ ki−1 or ti is algebraic over ki−1. If 
E = k(t1, · · · , tn) is a liouvillian extension such that t′i ∈ ki−1 for each i then we call E an iterated 
antiderivative extension of k. A solution of a differential equation over k is said to be liouvillian over k if 
the solution belongs to some liouvillian extension of k.

Let P be an n + 1 variable polynomial over k. We are concerned with the liouvillian solutions of the 
differential equation

P(y, y′, · · · , y(n)) = 0. (1.1)

E-mail address: ravisri@iisermohali.ac.in.
1 We adopt Rosenlicht’s definition of a liouvillian extension (see [4], page 371), which in turn is equivalent to the one given by 

Kolchin in [2], page 408, exercise 5. For details, read Remark 1.4.
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We prove in Theorem 2.2 that

if E is a liouvillian extension of k and K is a differential field intermediate to E and k then K =
k〈u1, · · · , ul〉 where for each i, the element ui satisfies a linear differential equation over k〈u1, · · · , ui−1〉. 
Moreover if E is an iterated antiderivative extension of k having the same field of constants as k then 
each ui can be chosen so that u′

i ∈ k(u1, · · · , ui−1), that is, K is also an iterated antiderivative extension 
of k.

Our result regarding iterated antiderivative extensions generalises the main result of [8] to differential 
fields k having a non-algebraically closed field of constants. The main ingredient used in the proof of our
theorem is Lemma 2.1 using which we also obtain the following interesting results concerning solutions of 
nonlinear differential equations.

A. In Remark 2.3, we show that if E is an iterated antiderivative extension of k having the same field of 
constants and if y ∈ E and y /∈ k satisfies a differential equation y′ = P(y), where P is a polynomial in 
one variable over k, then degree of P must be less than or equal to 2.

B. Let C be an algebraically closed field of characteristic zero with the trivial derivation. In Proposition 3.1, 
we prove that for any rational function R in one variable over C, the differential equation y′ = R(y)
has a non-constant liouvillian solution y if and only if 1/R(y) is of the form ∂z/∂y or (1/az)(∂z/∂y) for 
some z ∈ C(y) and for some nonzero element a ∈ C. This result generalises and provides a new proof 
for a result of Singer (see [5], Corollary 2). We also prove that for any polynomial P in one variable 
over C such that the degree of P is greater than or equal to 3 and that P has no repeated roots, the 
differential equation (y′)2 = P(y) has no non-constant liouvillian solution over C. This result appears 
as Proposition 3.2 and it generalises an observation made by Rosenlicht [4] concerning non-constant
liouvillian solutions of the elliptic equation (y′)2 = y3 + ay + b over complex numbers with a nonzero
discriminant.

C. Using Theorem 2.2 one can construct a family of differential equations with only algebraic solutions: 
Let α2, α3, · · · , αn ∈ k such that x′ �= α2 and x′ �= α3 for any x ∈ k. Let k be an algebraic closure of k
and let E be a liouvillian extension of k with CE = Ck. We prove in Proposition 3.3 that if there is an 
element y ∈ E such that

y′ = αny
n + · · · + α3y

3 + α2y
2

then y ∈ k.

In a future publication, the author hopes to develop the techniques in this paper further to provide an 
algorithm to solve the following problem, which appears as “Problem 7” in [7]: Give a procedure to decide 
if a polynomial first order differential equation P(y, y′) = 0, over the ordinary differential field C(x) with 
the usual derivation d/dx, has an elementary solution and to find one if it does.

Preliminaries and notations. A derivation of the field k, denoted by ′, is an additive endomorphism of k that 
satisfies the Leibniz law (xy)′ = x′y+xy′ for every x, y ∈ k. A field equipped with a derivation map is called 
a differential field. For any y ∈ k, we will denote first and second derivatives of y by y′ and y′′ respectively 
and for n ≥ 3, the nth derivative of y will be denoted by y(n). The set of constants CE of a differential field 
E is the kernel of the endomorphism ′ and it can be seen that the set of constants is a differential subfield 
of k. Let E and k be differential fields. We say that E is a differential field extension of k if E is a field 
extension of k and the restriction of the derivation of E to k coincides with the derivation of k. Whenever we 
write k ⊆ E as differential fields, we mean that E is a differential field extension of k and we write y ∈ E−k
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