Ideals in deformation quantizations over $\mathbb{Z} / p^{n} \mathbb{Z}$

Akaki Tikaradze
The University of Toledo, Department of Mathematics, Toledo, OH, USA

A R T I C L E I N F O

Article history:
Received 13 July 2015
Received in revised form 6 April 2016
Available online 5 July 2016
Communicated by S. Donkin

Abstract

Let \mathbf{k} be a perfect field of characteristic $p>2$. Let A_{1} be an Azumaya algebra over a smooth symplectic affine variety over \mathbf{k}. Let A_{n} be a deformation quantization of A_{1} over $W_{n}(\mathbf{k})$. We prove that all $W_{n}(\mathbf{k})$-flat two-sided ideals of A_{n} are generated by central elements.

© 2016 Elsevier B.V. All rights reserved.

Let \mathbf{k} be a perfect field of characteristic $p>2$. For $n \geq 1$, let $W_{n}(\mathbf{k})$ denote the ring of length n Witt vectors over \mathbf{k}. Also, $W(\mathbf{k})$ will denote the ring of Witt vectors over \mathbf{k}. As usual, given an algebra B its center will be denoted by $Z(B)$. Throughout the paper we will fix once and for all an affine smooth symplectic variety X over \mathbf{k}, and an Azumaya algebra A_{1} over X (equivalently over \mathcal{O}_{X}). Thus, we may (and will) identify the center of A_{1} with \mathcal{O}_{X}-the structure ring of $X: Z\left(A_{1}\right)=\mathcal{O}_{X}$. Let $\{$,$\} denote the$ corresponding Poisson bracket on \mathcal{O}_{X}. A deformation quantization of A_{1} over $W_{n}(\mathbf{k}), n \geq 1$ is, by definition, a flat associative $W_{n}(\mathbf{k})$-algebra A equipped with an isomorphism $A / p A \simeq A_{1}$ such that for any $a, b \in A$ such that $a \bmod p \in \mathcal{O}_{X}, b \bmod p \in \mathcal{O}_{X}$, one has

$$
\{a \bmod p, b \bmod p\}=\left(\frac{1}{p}[a, b]\right) \bmod p .
$$

One defines similarly a quantization of A_{1} over $W(\mathbf{k})$.
Main result of this note is the following

Theorem 1. Let A be a deformation quantization over $W_{n}(\mathbf{k})$ of an Azumaya algebra A_{1} over X. Let $I \subset A$ be a two-sided ideal which is flat over $W_{n}(\mathbf{k})$. Then I is generated by central elements: $I=(Z(A) \cap I) A$.
${ }^{1}$ Before proving this result we will need to recall some results of Stewart and Vologodsky [3] on centers of certain algebras over $W_{n}(\mathbf{k})$.

[^0]Throughout for an associative flat $W_{n}(\mathbf{k})$-algebra R, we will denote its reduction $\bmod p^{m}$ by $R_{m}=$ $R / p^{m} R$. Also center of an algebra R_{m} will be denoted by $Z_{m}, m \leq n$. Recall that in this setting there is the natural deformation Poisson bracket on Z_{1} defined as follows. Given $z, w \in Z_{1}$, let \tilde{z}, \tilde{w} be lifts in R of z, w respectively. Then put

$$
\{z, w\}=\frac{1}{p}[\tilde{z}, \tilde{w}] \quad \bmod p
$$

In this setting, Stewart and Vologodsky [3, formula (1.3)] constructed a ring homomorphism $\phi_{m}: W_{m}\left(Z_{1}\right) \rightarrow$ Z_{m} from the ring of length m Witt vectors over Z_{1} to Z_{m}, defined as follows

$$
\phi_{n}\left(z_{1}, \cdots, z_{m}\right)=\sum_{i=1}^{m} p^{i-1} \tilde{z}_{i} p^{m-i}
$$

where $\tilde{z}_{i} \in R$ is a lift of $z_{i}, 1 \leq i \leq m$. We also have the following natural maps

$$
r: Z_{m} \rightarrow Z_{m-1}, r(x)=x \quad \bmod p^{m-1}, v: Z_{m-1} \rightarrow Z_{m}, v(x)=p \tilde{x}
$$

where \tilde{x} is a lift of x in R_{m}. On the other hand on the level of Witt vectors of Z_{1}, we have the Verschibung map $V: W_{m}\left(Z_{1}\right) \rightarrow W_{m+1}\left(Z_{1}\right)$ and the Frobenius map $F: W_{m}\left(Z_{1}\right) \rightarrow W_{m-1}\left(Z_{1}\right)$. It was checked in [3] that above maps commute

$$
\phi_{m-1} F=r \phi_{m}, \quad \phi_{m} V=v \phi_{m-1} .
$$

We will recall the following crucial computation from [3]. Let $x=\phi_{m}(z), z=\left(z_{1}, \cdots, z_{m}\right) \in W_{m}\left(Z_{1}\right)$ and let \tilde{x} be a lift of x in R_{m+1}. Then it was verified in [3] that the following inequality holds in $\operatorname{Der}_{\mathbf{k}}\left(Z_{1}, Z_{1}\right)$

$$
\begin{equation*}
\delta_{x}=\left.\left(\frac{1}{p^{m}}[\tilde{x},-]\right) \quad \bmod p\right|_{Z_{1}}=\sum_{i=1}^{m} z_{i}^{p^{m-i}-1}\left\{z_{i},-\right\} \tag{2}
\end{equation*}
$$

The main result of [3, Theorem 1] states that if $\operatorname{Spec} Z_{1}$ is smooth variety and the deformation Poisson bracket on Z_{1} is induced from a symplectic form on $\operatorname{Spec} Z_{1}$, then the map ϕ_{m} is an isomorphism for all $m \leq n$. In particular,

$$
Z_{1} p^{p^{m}}=Z_{m+1} \quad \bmod p
$$

We will need the following slight generalization of this result. Its proof follows very closely to the one in [3, Theorem 1].

Proposition 3. Let $n \geq 1$ and $m \subset \mathcal{O}_{X}$ be an ideal, and let $B=\mathcal{O}_{X} / m^{p^{n}} \mathcal{O}_{X}$. Let R be an associative flat $W_{n}(\mathbf{k})$-algebra such that $Z(R / p R)=B$ and the corresponding deformation Poisson bracket on B coincides with the one induces from X. Then

$$
Z(R)=\phi_{n}\left(W_{n}(B)\right), \quad Z(R) \cap p R=\phi_{n}\left(V W_{n-1}(B)\right) .
$$

Just as in [3, Lemma 2.7] the following result plays the crucial role.
Lemma 4. Let $z_{1}, \cdots, z_{n} \in B$ be such that $\sum_{i=1}^{n} z_{i}^{p^{n-i}-1} d z_{i}=0$. Then $z_{i} \in B^{p}+\bar{m}^{p^{i}} B$, where $\bar{m}=$ $m / m^{p^{n}} \mathcal{O}_{X}$.

https://daneshyari.com/en/article/4595735

Download Persian Version:
https://daneshyari.com/article/4595735

Daneshyari.com

[^0]: E-mail address: tikar06@gmail.com.
 ${ }^{1}$ We showed in [6] that Hochschild cohomology of a quantization A is isomorphic to the de Rham-Witt complex $W_{n} \Omega_{X}^{*}$ of X.

