Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On parabolic Kazhdan–Lusztig R-polynomials for the symmetric group

Neil J.Y. Fan^a, Peter L. Guo^b, Grace L.D. Zhang^b

^a Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China
 ^b Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

A R T I C L E I N F O

Article history: Received 24 August 2015 Received in revised form 20 April 2016 Available online 16 June 2016 Communicated by E.M. Friedlander

MSC: 20F55; 05E99

ABSTRACT

Parabolic *R*-polynomials were introduced by Deodhar as parabolic analogues of ordinary *R*-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic *R*-polynomials for the symmetric group. Let S_n be the symmetric group on $\{1, 2, \ldots, n\}$, and let $S = \{s_i \mid 1 \leq i \leq n-1\}$ be the generating set of S_n , where for $1 \leq i \leq n-1$, s_i is the adjacent transposition. For a subset $J \subseteq S$, let $(S_n)_J$ be the parabolic subgroup generated by J, and let $(S_n)^J$ be the set of minimal coset representatives for $S_n/(S_n)_J$. For $u \leq v \in (S_n)^J$ in the Bruhat order and $x \in \{q, -1\}$, let $R_{u,v}^{J,v}(q)$ denote the parabolic *R*-polynomial indexed by u and v. Brenti found a formula for $R_{u,v}^{J,x}(q)$ when $J = S \setminus \{s_i\}$, and obtained an expression for $R_{u,v}^{J,x}(q)$ when $J = S \setminus \{s_{i-1}, s_i\}$. In this paper, we provide a formula for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$ and i appears after i-1 in v. It should be noted that the condition that i appears after i-1 in v is equivalent to that v is a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. We also pose a conjecture for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$ with $1 \leq k \leq i \leq n-1$ and v is a permutation in $(S_n)^{S \setminus \{s_{k,s_i}\}}$.

@ 2016 Elsevier B.V. All rights reserved.

1. Introduction

Parabolic *R*-polynomials for a Coxeter group were introduced by Deodhar [4] as parabolic analogues of ordinary *R*-polynomials defined by Kazhdan and Lusztig [7]. In this paper, we consider the computation of parabolic *R*-polynomials for the symmetric group. Let S_n be the symmetric group on $\{1, 2, ..., n\}$, and let $S = \{s_1, s_2, ..., s_{n-1}\}$ be the generating set of S_n , where for $1 \le i \le n-1$, s_i is the adjacent transposition that interchanges the elements *i* and *i*+1. For a subset $J \subseteq S$, let $(S_n)_J$ be the parabolic subgroup generated by *J*, and let $(S_n)^J$ be the set of minimal coset representatives of $S_n/(S_n)_J$. Assume that *u* and *v* are two permutations in $(S_n)^J$ such that $u \le v$ in the Bruhat order. For $x \in \{q, -1\}$, let $R_{u,v}^{J,x}(q)$ denote the parabolic

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2016.06.007 \\ 0022-4049/© 2016 Elsevier B.V. All rights reserved.$

E-mail addresses: fan@scu.edu.cn (N.J.Y. Fan), lguo@nankai.edu.cn (P.L. Guo), zhld@mail.nankai.edu.cn (G.L.D. Zhang).

R-polynomial indexed by u and v. When $J = S \setminus \{s_i\}$, Brenti [2] found a formula for $R_{u,v}^{J,v}(q)$. Recently, Brenti [3] obtained an expression for $R_{u,v}^{J,x}(q)$ for $J = S \setminus \{s_{i-1}, s_i\}$.

In this paper, we consider the case $J = S \setminus \{s_{i-2}, s_{i-1}, s_i\}$. We introduce a statistic on pairs of permutations in $(S_n)^J$ and then we give a formula for $R_{u,v}^{J,x}(q)$, where v is restricted to a permutation in $(S_n)^{S \setminus \{s_{i-2}, s_i\}}$. Notice that $v \in (S_n)^{S \setminus \{s_{i-2}, s_i\}}$ is equivalent to that $v \in (S_n)^J$ and i appears after i-1 in v. It should be noted that there does not seem to exist an explicit formula for the case when $v \in (S_n)^J$ and i appears before i - 1 in v.

We also conjecture a formula for $R_{u,v}^{J,x}(q)$, where $J = S \setminus \{s_k, s_{k+1}, \ldots, s_i\}$ with $1 \le k \le i \le n-1$ and $v \in (S_n)^{S \setminus \{s_k, s_i\}}$. Notice also that $v \in (S_n)^{S \setminus \{s_k, s_i\}}$ can be equivalently described as the condition that $v \in (S_n)^J$ and the elements $k+1, k+2, \ldots, i$ appear in increasing order in v. This conjecture contains Brenti's formulas and our result as special cases. When k = 1 and i = n - 1, it becomes a conjecture for a formula of the ordinary R-polynomials $R_{u,v}(q)$, where v is a permutation in S_n such that $2, 3, \ldots, n-1$ appear in increasing order in v.

Let us begin with some terminology and notation. For a Coxeter group W with a generating set S, let $T = \{wsw^{-1} \mid w \in W, s \in S\}$ be the set of reflections of W. For $w \in W$, the length $\ell(w)$ of w is defined as the smallest k such that w can be written as a product of k generators in S. For $u, v \in W$, we say that $u \leq v$ in the Bruhat order if there exists a sequence t_1, t_2, \ldots, t_r of reflections such that $v = ut_1 t_2 \cdots t_r$ and $\ell(ut_1\cdots t_i) > \ell(ut_1\cdots t_{i-1}) \text{ for } 1 \le i \le r.$

For a subset $J \subseteq S$, let W_J be the parabolic subgroup generated by J, and let W^J be the set of minimal right coset representatives of W/W_{I} , that is,

$$W^J = \{ w \in W \mid \ell(sw) > \ell(w), \text{ for all } s \in J \}.$$

$$(1.1)$$

We use $D_R(w)$ to denote the set of right descents of w, that is,

$$D_R(w) = \{ s \in S \,|\, \ell(ws) < \ell(w) \}.$$
(1.2)

For $u, v \in W^J$, the parabolic *R*-polynomial $R_{u,v}^{J,x}(q)$ can be recursively determined by the following property.

Theorem 1.1 (Deodhar [4]). Let (W, S) be a Coxeter system and J be a subset of S. Then, for each $x \in$ $\{q, -1\}$, there is a unique family $\{R_{u,v}^{J,x}(q)\}_{u,v\in W^J}$ of polynomials with integer coefficients such that for all $u, v \in W^J$,

- (i) if $u \nleq v$, then $R_{u,v}^{J,x}(q) = 0$; (ii) if u = v, then $R_{u,v}^{J,x}(q) = 1$;
- (iii) if u < v, then for any $s \in D_B(v)$,

$$R_{u,v}^{J,x}(q) = \begin{cases} R_{us, vs}^{J,x}(q), & \text{if } s \in D_R(u), \\ q R_{us, vs}^{J,x}(q) + (q-1) R_{u, vs}^{J,x}(q), & \text{if } s \notin D_R(u) \text{ and } us \in W^J, \\ (q-1-x) R_{u, vs}^{J,x}(q), & \text{if } s \notin D_R(u) \text{ and } us \notin W^J. \end{cases}$$

Notice that when $J = \emptyset$, the parabolic *R*-polynomial $R_{u,v}^{J,x}(q)$ reduces to an ordinary *R*-polynomial $R_{u,v}(q)$, see, for example, Björner and Brenti [1, Chapter 5] or Humphreys [6, Chapter 7]. The parabolic *R*-polynomials $R_{u,v}^{J,x}(q)$ for x = q and x = -1 satisfy the following relation, so that we only need to consider the computation for the case x = q.

Theorem 1.2 (Deodhar [5, Corollary 2.2]). For $u, v \in W^J$ with $u \leq v$,

$$q^{\ell(v)-\ell(u)} R_{u,v}^{J,q}\left(\frac{1}{q}\right) = (-1)^{\ell(v)-\ell(u)} R_{u,v}^{J,-1}(q).$$

Download English Version:

https://daneshyari.com/en/article/4595736

Download Persian Version:

https://daneshyari.com/article/4595736

Daneshyari.com