On parabolic Kazhdan-Lusztig R-polynomials for the symmetric group

Neil J.Y. Fan ${ }^{\text {a }}$, Peter L. Guo ${ }^{\text {b }}$, Grace L.D. Zhang ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China
${ }^{\text {b }}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

A R T I C L E I N F O

Article history:

Received 24 August 2015
Received in revised form 20 April 2016
Available online 16 June 2016
Communicated by E.M. Friedlander

MSC:

20F55; 05E99

Abstract

Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic R-polynomials for the symmetric group. Let S_{n} be the symmetric group on $\{1,2, \ldots, n\}$, and let $S=\left\{s_{i} \mid 1 \leq i \leq n-1\right\}$ be the generating set of S_{n}, where for $1 \leq i \leq n-1, s_{i}$ is the adjacent transposition. For a subset $J \subseteq S$, let $\left(S_{n}\right)_{J}$ be the parabolic subgroup generated by J, and let $\left(S_{n}\right)^{J}$ be the set of minimal coset representatives for $S_{n} /\left(S_{n}\right)_{J}$. For $u \leq v \in\left(S_{n}\right)^{J}$ in the Bruhat order and $x \in\{q,-1\}$, let $R_{u, v}^{J, x}(q)$ denote the parabolic R-polynomial indexed by u and v. Brenti found a formula for $R_{u, v}^{J, x}(q)$ when $J=S \backslash\left\{s_{i}\right\}$, and obtained an expression for $R_{u, v}^{J, x}(q)$ when $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$. In this paper, we provide a formula for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$ and i appears after $i-1$ in v. It should be noted that the condition that i appears after $i-1$ in v is equivalent to that v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. We also pose a conjecture for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$ with $1 \leq k \leq i \leq n-1$ and v is a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Parabolic R-polynomials for a Coxeter group were introduced by Deodhar [4] as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig [7]. In this paper, we consider the computation of parabolic R-polynomials for the symmetric group. Let S_{n} be the symmetric group on $\{1,2, \ldots, n\}$, and let $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ be the generating set of S_{n}, where for $1 \leq i \leq n-1, s_{i}$ is the adjacent transposition that interchanges the elements i and $i+1$. For a subset $J \subseteq S$, let $\left(S_{n}\right)_{J}$ be the parabolic subgroup generated by J, and let $\left(S_{n}\right)^{J}$ be the set of minimal coset representatives of $S_{n} /\left(S_{n}\right)_{J}$. Assume that u and v are two permutations in $\left(S_{n}\right)^{J}$ such that $u \leq v$ in the Bruhat order. For $x \in\{q,-1\}$, let $R_{u, v}^{J, x}(q)$ denote the parabolic

[^0]R-polynomial indexed by u and v. When $J=S \backslash\left\{s_{i}\right\}$, Brenti [2] found a formula for $R_{u, v}^{J, x}(q)$. Recently, Brenti [3] obtained an expression for $R_{u, v}^{J, x}(q)$ for $J=S \backslash\left\{s_{i-1}, s_{i}\right\}$.

In this paper, we consider the case $J=S \backslash\left\{s_{i-2}, s_{i-1}, s_{i}\right\}$. We introduce a statistic on pairs of permutations in $\left(S_{n}\right)^{J}$ and then we give a formula for $R_{u, v}^{J, x}(q)$, where v is restricted to a permutation in $\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$. Notice that $v \in\left(S_{n}\right)^{S \backslash\left\{s_{i-2}, s_{i}\right\}}$ is equivalent to that $v \in\left(S_{n}\right)^{J}$ and i appears after $i-1$ in v. It should be noted that there does not seem to exist an explicit formula for the case when $v \in\left(S_{n}\right)^{J}$ and i appears before $i-1$ in v.

We also conjecture a formula for $R_{u, v}^{J, x}(q)$, where $J=S \backslash\left\{s_{k}, s_{k+1}, \ldots, s_{i}\right\}$ with $1 \leq k \leq i \leq n-1$ and $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$. Notice also that $v \in\left(S_{n}\right)^{S \backslash\left\{s_{k}, s_{i}\right\}}$ can be equivalently described as the condition that $v \in\left(S_{n}\right)^{J}$ and the elements $k+1, k+2, \ldots, i$ appear in increasing order in v. This conjecture contains Brenti's formulas and our result as special cases. When $k=1$ and $i=n-1$, it becomes a conjecture for a formula of the ordinary R-polynomials $R_{u, v}(q)$, where v is a permutation in S_{n} such that $2,3, \ldots, n-1$ appear in increasing order in v.

Let us begin with some terminology and notation. For a Coxeter group W with a generating set S, let $T=\left\{w s w^{-1} \mid w \in W, s \in S\right\}$ be the set of reflections of W. For $w \in W$, the length $\ell(w)$ of w is defined as the smallest k such that w can be written as a product of k generators in S. For $u, v \in W$, we say that $u \leq v$ in the Bruhat order if there exists a sequence $t_{1}, t_{2}, \ldots, t_{r}$ of reflections such that $v=u t_{1} t_{2} \cdots t_{r}$ and $\ell\left(u t_{1} \cdots t_{i}\right)>\ell\left(u t_{1} \cdots t_{i-1}\right)$ for $1 \leq i \leq r$.

For a subset $J \subseteq S$, let W_{J} be the parabolic subgroup generated by J, and let W^{J} be the set of minimal right coset representatives of W / W_{J}, that is,

$$
\begin{equation*}
W^{J}=\{w \in W \mid \ell(s w)>\ell(w), \text { for all } s \in J\} . \tag{1.1}
\end{equation*}
$$

We use $D_{R}(w)$ to denote the set of right descents of w, that is,

$$
\begin{equation*}
D_{R}(w)=\{s \in S \mid \ell(w s)<\ell(w)\} . \tag{1.2}
\end{equation*}
$$

For $u, v \in W^{J}$, the parabolic R-polynomial $R_{u, v}^{J, x}(q)$ can be recursively determined by the following property.
Theorem 1.1 (Deodhar [4]). Let (W, S) be a Coxeter system and J be a subset of S. Then, for each $x \in$ $\{q,-1\}$, there is a unique family $\left\{R_{u, v}^{J, x}(q)\right\}_{u, v \in W^{J}}$ of polynomials with integer coefficients such that for all $u, v \in W^{J}$,
(i) if $u \not \leq v$, then $R_{u, v}^{J, x}(q)=0$;
(ii) if $u=v$, then $R_{u, v}^{J, x}(q)=1$;
(iii) if $u<v$, then for any $s \in D_{R}(v)$,

$$
R_{u, v}^{J, x}(q)= \begin{cases}R_{u s, v s}^{J, x}(q), & \text { if } s \in D_{R}(u), \\ q R_{u s, v s}^{J, x}(q)+(q-1) R_{u, v s}^{J, x}(q), & \text { if } s \notin D_{R}(u) \text { and } u s \in W^{J}, \\ (q-1-x) R_{u, v s}^{J, x}(q), & \text { if } s \notin D_{R}(u) \text { and } u s \notin W^{J} .\end{cases}
$$

Notice that when $J=\emptyset$, the parabolic R-polynomial $R_{u, v}^{J, x}(q)$ reduces to an ordinary R-polynomial $R_{u, v}(q)$, see, for example, Björner and Brenti [1, Chapter 5] or Humphreys [6, Chapter 7]. The parabolic R-polynomials $R_{u, v}^{J, x}(q)$ for $x=q$ and $x=-1$ satisfy the following relation, so that we only need to consider the computation for the case $x=q$.

Theorem 1.2 (Deodhar [5, Corollary 2.2]). For $u, v \in W^{J}$ with $u \leq v$,

$$
q^{\ell(v)-\ell(u)} R_{u, v}^{J, q}\left(\frac{1}{q}\right)=(-1)^{\ell(v)-\ell(u)} R_{u, v}^{J,-1}(q) .
$$

https://daneshyari.com/en/article/4595736

Download Persian Version:
https://daneshyari.com/article/4595736

Daneshyari.com

[^0]: E-mail addresses: fan@scu.edu.cn (N.J.Y. Fan), lguo@nankai.edu.cn (P.L. Guo), zhld@mail.nankai.edu.cn (G.L.D. Zhang).

