# The Entringer-Poupard matrix sequence 

Dominique Foata ${ }^{\text {a }}$, Guo-Niu Han ${ }^{\text {b,* }}$, Volker Strehl ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Institut Lothaire, 1, rue Murner, F-67000 Strasbourg, France<br>${ }^{\mathrm{b}}$ I.R.M.A. UMR 7501, Université de Strasbourg et CNRS, 7, rue René Descartes, F-67084 Strasbourg, France<br>${ }^{\text {c }}$ Department Informatik, Universität Erlangen-Nürnberg, Martensstr. 3, D-91058 Erlangen, Germany

## A R T I C L E I N F O

## Article history:

Received 4 February 2016
Accepted 12 September 2016
Available online 19 September 2016
Submitted by R. Brualdi

## MSC:

05A15
05A30
11B68
33B10
Keywords:
Entringer numbers
Poupard numbers
Tangent numbers
Secant numbers
Linear refinement
Entringer-Poupard matrix sequence
Matrix refinement
Alternating permutations
Three-variate generating function
calculus
Seidel and skew Seidel matrices


#### Abstract

The so-called Entringer-Poupard matrices naturally occur when the distribution of the statistical pair ("last letter", "greater neighbor of maximum") is under study on the set of alternating permutations. They also provide a matrix refinement of the tangent/secant numbers. Moreover, their generating function can be explicitly derived.


© 2016 Elsevier Inc. All rights reserved.

[^0]
## 1. Introduction

The aim of this paper is to construct a well-defined sequence of matrices $\left(A_{n}=\right.$ $\left.\left(a_{n}(k, \ell)\right)_{(1 \leq k, \ell \leq n)}\right)(n \geq 1)$ with integral entries, called the Entringer-Poupard matrix sequence, which provides a matrix refinement $\sum_{k, \ell} a_{n}(k, \ell)=E_{n}$ of the tangent and secant numbers, in such a way that the row and column sums $\sum_{\ell} a_{n}(k, \ell)$ and $\sum_{k} a_{n}(k, \ell)$ are themselves Entringer and Poupard numbers, respectively. The sequence $\left(A_{n}\right)$ is defined by a system of partial finite difference equations and, moreover, the generating function for the entries $a_{n}(k, \ell)$ of the matrices $A_{n}$ can be explicitly evaluated.

This characterization of the Entringer-Poupard matrix sequence completes the program initiated in our previous papers, where matrix refinements of the tangent and secant numbers have been found having the property that both row and column sums were equal to Poupard numbers as in [8] and [9], and to Entringer numbers as done in [10] and [11]. There remains to say something relevant when both Entringer and Poupard numbers are involved.

### 1.1. Tangent and secant numbers; Entringer and Poupard numbers

The classical Euler numbers $\left(E_{n}\right) \geq 0$ are the (integer) coefficients in exponential series expansion of the tangent resp. the secant function, viz.

$$
\begin{aligned}
& \tan u=\sum_{n \geq 0} \frac{u^{2 n+1}}{(2 n+1)!} E_{2 n+1}=\frac{u}{1!} 1+\frac{u^{3}}{3!} 2+\frac{u^{5}}{5!} 16+\frac{u^{7}}{7!} 272+\frac{u^{9}}{9!} 7936+\cdots, \\
& \sec u=\sum_{n \geq 0} \frac{u^{2 n}}{(2 n)!} E_{2 n}=1+\frac{u^{2}}{2!} 1+\frac{u^{4}}{4!} 5+\frac{u^{6}}{6!} 61+\frac{u^{8}}{8!} 1385+\frac{u^{10}}{10!} 50521+\cdots,
\end{aligned}
$$

see e.g. [15] (pp. 177-178) or [4] (pp. 258-259) for the expansions, sequences A000182 and A000364 of the Sloane's Encyclopedia [16] for tables and more information.

The Entringer numbers $E_{n}(k)(1 \leq k \leq n)$ are traditionally defined by a first-order difference equation system. See, e.g., Sloane's Encyclopedia of integers [16], where they are registered as the A008282 sequence. The Poupard numbers $P_{n}(k)(1 \leq k \leq n-1)$ are registered as the A236934 and A125053 sequences, respectively, in that Encyclopedia. A full study of those latter two sequences was made in our previous paper [7]. With $\Delta$ standing for the classical finite difference operator $\Delta E_{n}(k):=E_{n}(k+1)-E_{n}(k)$, their definitions can be stated as follows:

$$
\Delta^{2} E_{n}(k)+E_{n-2}(k)=0 \quad(1 \leq k \leq n-2)
$$

with the initial conditions:

$$
E_{1}(1)=1 ; \quad E_{n}(1)=E_{n}(2)=\sum_{k} E_{n-1}(k) \quad(n \text { odd } \geq 3) ;
$$

# https://daneshyari.com/en/article/4598396 

Download Persian Version:

## https://daneshyari.com/article/4598396

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: foata@unistra.fr (D. Foata), guoniu.han@unistra.fr (G.-N. Han), volker.strehl@fau.de (V. Strehl).

