On the numerical range of matrices over a finite field

E. Ballico ${ }^{1}$
Dept. of Mathematics, University of Trento, 3123 Povo (TN), Italy

A R T I C L E I N F O

Article history:

Received 13 April 2016
Accepted 21 September 2016
Available online 23 September 2016
Submitted by C.-K. Li

MSC:

15A33
15A60

Keywords:
Numerical range
Finite field
2×2-matrix

Abstract

Let q be a prime power. Following a paper by Coons, Jenkins, Knowles, Luke and Rault (case q a prime $p \equiv 3(\bmod 4)$) we define the numerical range $\operatorname{Num}(M) \subseteq \mathbb{F}_{q^{2}}$ of an $n \times n$-matrix M with coefficients in $\mathbb{F}_{q^{2}}$ in terms of the usual Hermitian form. We prove that $\sharp(\operatorname{Num}(M))>q($ case $q \neq 2)$, unless M is unitarily equivalent to a diagonal matrix with eigenvalues contained in an affine \mathbb{F}_{q}-line. We study in details $\operatorname{Num}(M)$ when $n=2$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fix a prime p and a power q of p. Up to field isomorphisms there is a unique field \mathbb{F}_{q} such that $\sharp\left(\mathbb{F}_{q}\right)=q\left[9\right.$, Theorem 2.5]. Let e_{1}, \ldots, e_{n} be the standard basis of $\mathbb{F}_{q^{2}}^{n}$. For all $v, w \in \mathbb{F}_{q^{2}}^{n}$, say $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ and $w=b_{1} e_{1}+\cdots+b_{n} e_{n}$ set $\langle v, w\rangle=\sum_{i=1}^{n} a_{i}^{q} b_{i}$. \langle,$\rangle is the standard Hermitian form of \mathbb{F}_{q^{2}}^{n}$. The set $\left\{u \in \mathbb{F}_{q^{2}}^{n} \mid\langle u, u\rangle=1\right\}$ is an affine chart of the Hermitian variety of $\mathbb{P}^{n}\left(\mathbb{F}_{q^{2}}\right)$ [4, Ch. 5], [6, Ch. 23]. Let M be an $n \times n$ matrix with coefficients in $\mathbb{F}_{q^{2}}$. The numerical range $\operatorname{Num}(M)$ of M is the set of all $\langle u, M u\rangle$

[^0]with $\langle u, u\rangle=1$. \mathbb{C} is a degree 2 Galois extension of \mathbb{R} with the complex conjugation as the generator of the Galois group. $\mathbb{F}_{q^{2}}$ is a degree 2 Galois extension of \mathbb{F}_{q} with the map $t \mapsto t^{q}$ as a generator of the Galois group. Hence \langle,$\rangle is the Hermitian form associated to$ this Galois extension. Thus the definition of $\operatorname{Num}(M)$ is a natural extension of the notion of numerical range in linear algebra [3,7,8,10]. This extension was introduced in [2] when q is a prime $p \equiv 3(\bmod 4)$.

For any $d \in \mathbb{F}_{q} \backslash\{0\}$ and any $c \in \mathbb{F}_{q^{2}}$ the set $C_{c, d}:=\left\{x \in \mathbb{F}_{q^{2}} \mid(x-c)^{q+1}=d\right\}$ is called the Hermitian circle with center c and squared-radius d. The map $x \mapsto x-c$ induces a bijection between $C_{c, d}$ and $C_{0, d}$. We have $\sharp\left(C_{0, d}\right)=q+1$ for all $d \in \mathbb{F}_{q} \backslash\{0\}$ (Remark 3). $\mathbb{F}_{q^{2}}$ is a 2-dimensional $\mathbb{F}_{q^{-}}$-vector space and hence it has $q^{2}+q$ affine \mathbb{F}_{q}-lines, i.e. subsets of the form $\{t a+(1-t) b\}_{t \in \mathbb{F}_{q}}$ for some $a, b \in \mathbb{F}_{q^{2}}$ with $a \neq b$.

We prove the following result (in which $\mathbb{I}_{x \times x}$ is the identity $x \times x$ matrix).

Theorem 1. Let M be an $n \times n$-matrix over $\mathbb{F}_{q^{2}}$.
(a) If $M=c \mathbb{I}_{n \times n}$, then $\operatorname{Num}(M)=\{c\}$.
(b) If M is unitarily equivalent to a direct sum of $k \geq 2$ diagonal matrices $c_{i} \mathbb{I}_{n_{i} \times n_{i}}$, $1 \leq i \leq k$, with $c_{i} \neq c_{j}$ for all $i \neq j$, then either $\operatorname{Num}(M)=\mathbb{F}_{q^{2}}$ or $\operatorname{Num}(M)$ is the affine \mathbb{F}_{q}-line $\left\{t c_{1}+(1-t) c_{2}\right\}_{t \in \mathbb{F}_{q}}$, the latter case occurring if and only if $c_{i} \in\left\{t c_{1}+(1-t) c_{2}\right\}_{t \in \mathbb{F}_{q}}$ for all i.
(c) If $M \neq c \mathbb{I}_{n \times n}$, then $\operatorname{Num}(M)$ contains either an affine \mathbb{F}_{q}-line or a Hermitian circle.
(d) If M is not as in (a) or (b) and $q \neq 2$, then $\sharp(\operatorname{Num}(M))>q$.

Except to prove Theorem 1 we only consider 2×2 matrices. For certain 2×2 matrices M we are able to describe $\operatorname{Num}(M)$. Obviously $\operatorname{Num}(M)=\{c\}$ if $M=c \mathbb{I}_{n \times n}$.

Proposition 1. Assume $n=2$ and that M has a unique eigenvalue, c, that its eigenspace has dimension 1, and that $\langle v, v\rangle \neq 0$ for some eigenvector v. Set $\rho:=q / 2-1$ if q is even and $\rho:=(q-1) / 2$ if q is odd. Then $\sharp(\operatorname{Num}(M))=1+\rho(q+1)$ and $\operatorname{Num}(M)$ is the disjoint union of $\{c\}$ and ρ disjoint Hermitian circles with centers at c.

Proposition 2. If q is odd, set $\rho=(q-1) / 2$. If q is even, set $\rho:=q / 2-1$. Assume $n=2$ and that M has 2 different eigenvalues $c_{1}, c_{2} \in \mathbb{F}_{q^{2}}$ and that for each $i=1,2$ there is $v_{i} \in \mathbb{F}_{q^{2}}^{2}$ with $M v_{i}=c_{i} v_{i},\left\langle v_{1}, v_{1}\right\rangle \neq 0$ and $\left\langle v_{1}, v_{2}\right\rangle \neq 0$. Then $\operatorname{Num}(M)$ is the union of $\left\{c_{1}, c_{2}\right\}$ and ρ Hermitian circles and hence $\operatorname{Num}(M) \leq 2+\rho(q+1)$.

In Proposition 4 and in Lemma 2 below we do not claim that the union is a disjoint union and hence we only claim the upper bound for $\sharp(\operatorname{Num}(M))$ (see [1, Example 3.7]).

Proposition 3. Assume $n=2$ and that M has eigenvalues $c_{1}, c_{2} \in \mathbb{F}_{q^{2}}$ and $v_{i} \in \mathbb{F}_{q^{2}}^{2} \backslash\{0\}$, $i=1,2$, such that $c_{1} \neq c_{2}, M v_{i}=c_{i} v_{i}$ and $\left\langle v_{i}, v_{i}\right\rangle=0$ for all i. Then $\sharp(\operatorname{Num}(M))=1+q$ and $\operatorname{Num}(M)$ is the union of $\{0\}$ and the set $E:=\left\{t \in \mathbb{F}_{q^{2}} \mid t^{q}+t=1\right\}$.

https://daneshyari.com/en/article/4598401

Download Persian Version:

https://daneshyari.com/article/4598401

Daneshyari.com

[^0]: E-mail address: ballico@science.unitn.it.
 ${ }^{1}$ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

