

On the numerical range of matrices over a finite field

E. Ballico¹

Dept. of Mathematics, University of Trento, 3123 Povo (TN), Italy

ARTICLE INFO

Article history: Received 13 April 2016 Accepted 21 September 2016 Available online 23 September 2016 Submitted by C.-K. Li

MSC: 15A33 15A60

Keywords: Numerical range Finite field 2×2 -matrix

ABSTRACT

Let q be a prime power. Following a paper by Coons, Jenkins, Knowles, Luke and Rault (case q a prime $p \equiv 3 \pmod{4}$) we define the numerical range $\operatorname{Num}(M) \subseteq \mathbb{F}_{q^2}$ of an $n \times n$ -matrix M with coefficients in \mathbb{F}_{q^2} in terms of the usual Hermitian form. We prove that $\sharp(\operatorname{Num}(M)) > q$ (case $q \neq 2$), unless M is unitarily equivalent to a diagonal matrix with eigenvalues contained in an affine \mathbb{F}_q -line. We study in details $\operatorname{Num}(M)$ when n = 2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fix a prime p and a power q of p. Up to field isomorphisms there is a unique field \mathbb{F}_q such that $\sharp(\mathbb{F}_q) = q$ [9, Theorem 2.5]. Let e_1, \ldots, e_n be the standard basis of $\mathbb{F}_{q^2}^n$. For all $v, w \in \mathbb{F}_{q^2}^n$, say $v = a_1e_1 + \cdots + a_ne_n$ and $w = b_1e_1 + \cdots + b_ne_n$ set $\langle v, w \rangle = \sum_{i=1}^n a_i^q b_i$. \langle , \rangle is the standard Hermitian form of $\mathbb{F}_{q^2}^n$. The set $\{u \in \mathbb{F}_{q^2}^n \mid \langle u, u \rangle = 1\}$ is an affine chart of the Hermitian variety of $\mathbb{P}^n(\mathbb{F}_{q^2})$ [4, Ch. 5], [6, Ch. 23]. Let M be an $n \times n$ matrix with coefficients in \mathbb{F}_{q^2} . The numerical range Num(M) of M is the set of all $\langle u, Mu \rangle$

E-mail address: ballico@science.unitn.it.

¹ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

with $\langle u, u \rangle = 1$. \mathbb{C} is a degree 2 Galois extension of \mathbb{R} with the complex conjugation as the generator of the Galois group. \mathbb{F}_{q^2} is a degree 2 Galois extension of \mathbb{F}_q with the map $t \mapsto t^q$ as a generator of the Galois group. Hence \langle , \rangle is the Hermitian form associated to this Galois extension. Thus the definition of Num(M) is a natural extension of the notion of numerical range in linear algebra [3,7,8,10]. This extension was introduced in [2] when q is a prime $p \equiv 3 \pmod{4}$.

For any $d \in \mathbb{F}_q \setminus \{0\}$ and any $c \in \mathbb{F}_{q^2}$ the set $C_{c,d} := \{x \in \mathbb{F}_{q^2} \mid (x-c)^{q+1} = d\}$ is called the Hermitian circle with center c and squared-radius d. The map $x \mapsto x - c$ induces a bijection between $C_{c,d}$ and $C_{0,d}$. We have $\sharp(C_{0,d}) = q+1$ for all $d \in \mathbb{F}_q \setminus \{0\}$ (Remark 3). \mathbb{F}_{q^2} is a 2-dimensional \mathbb{F}_q -vector space and hence it has $q^2 + q$ affine \mathbb{F}_q -lines, i.e. subsets of the form $\{ta + (1-t)b\}_{t \in \mathbb{F}_q}$ for some $a, b \in \mathbb{F}_{q^2}$ with $a \neq b$.

We prove the following result (in which $\mathbb{I}_{x \times x}$ is the identity $x \times x$ matrix).

Theorem 1. Let M be an $n \times n$ -matrix over \mathbb{F}_{q^2} .

- (a) If $M = c \mathbb{I}_{n \times n}$, then $\operatorname{Num}(M) = \{c\}$.
- (b) If M is unitarily equivalent to a direct sum of $k \ge 2$ diagonal matrices $c_i \mathbb{I}_{n_i \times n_i}$, $1 \le i \le k$, with $c_i \ne c_j$ for all $i \ne j$, then either $\operatorname{Num}(M) = \mathbb{F}_{q^2}$ or $\operatorname{Num}(M)$ is the affine \mathbb{F}_q -line $\{tc_1 + (1-t)c_2\}_{t\in\mathbb{F}_q}$, the latter case occurring if and only if $c_i \in \{tc_1 + (1-t)c_2\}_{t\in\mathbb{F}_q}$ for all i.
- (c) If $M \neq c\mathbb{I}_{n \times n}$, then Num(M) contains either an affine \mathbb{F}_q -line or a Hermitian circle.
- (d) If M is not as in (a) or (b) and $q \neq 2$, then $\sharp(\text{Num}(M)) > q$.

Except to prove Theorem 1 we only consider 2×2 matrices. For certain 2×2 matrices M we are able to describe Num(M). Obviously Num $(M) = \{c\}$ if $M = c \mathbb{I}_{n \times n}$.

Proposition 1. Assume n = 2 and that M has a unique eigenvalue, c, that its eigenspace has dimension 1, and that $\langle v, v \rangle \neq 0$ for some eigenvector v. Set $\rho := q/2 - 1$ if q is even and $\rho := (q - 1)/2$ if q is odd. Then $\sharp(\operatorname{Num}(M)) = 1 + \rho(q + 1)$ and $\operatorname{Num}(M)$ is the disjoint union of $\{c\}$ and ρ disjoint Hermitian circles with centers at c.

Proposition 2. If q is odd, set $\rho = (q-1)/2$. If q is even, set $\rho := q/2 - 1$. Assume n = 2and that M has 2 different eigenvalues $c_1, c_2 \in \mathbb{F}_{q^2}$ and that for each i = 1, 2 there is $v_i \in \mathbb{F}_{q^2}^2$ with $Mv_i = c_iv_i$, $\langle v_1, v_1 \rangle \neq 0$ and $\langle v_1, v_2 \rangle \neq 0$. Then Num(M) is the union of $\{c_1, c_2\}$ and ρ Hermitian circles and hence Num(M) $\leq 2 + \rho(q+1)$.

In Proposition 4 and in Lemma 2 below we do not claim that the union is a disjoint union and hence we only claim the upper bound for $\sharp(\text{Num}(M))$ (see [1, Example 3.7]).

Proposition 3. Assume n = 2 and that M has eigenvalues $c_1, c_2 \in \mathbb{F}_{q^2}$ and $v_i \in \mathbb{F}_{q^2}^2 \setminus \{0\}$, i = 1, 2, such that $c_1 \neq c_2$, $Mv_i = c_iv_i$ and $\langle v_i, v_i \rangle = 0$ for all i. Then $\sharp(\operatorname{Num}(M)) = 1+q$ and $\operatorname{Num}(M)$ is the union of $\{0\}$ and the set $E := \{t \in \mathbb{F}_{q^2} \mid t^q + t = 1\}$.

Download English Version:

https://daneshyari.com/en/article/4598401

Download Persian Version:

https://daneshyari.com/article/4598401

Daneshyari.com