

Contents lists available at ScienceDirect Linear Algebra and its Applications

www.elsevier.com/locate/laa

Brauer-type eigenvalue inclusion sets and the spectral radius of tensors

LINEAR

lications

Changjiang Bu^{a,b,*}, Xiuquan Jin^a, Haifeng Li^b, Chunli Deng^b

 ^a College of Science, Harbin Engineering University, Harbin 150001, PR China
 ^b College of Automation, Harbin Engineering University, Harbin 150001, PR China

ARTICLE INFO

Article history: Received 15 July 2016 Accepted 27 September 2016 Available online 29 September 2016 Submitted by J. Shao

MSC: 15A69 15A18 05C65

Keywords: Tensor Eigenvalue inclusion set Spectral radius Hypergraph

ABSTRACT

In this paper, we give two Brauer-type eigenvalue inclusion sets and some bounds on the spectral radius for tensors. As applications, some bounds on the spectral radius of uniform hypergraphs are presented.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, let $[n] = \{1, 2, ..., n\}$. An order m dimension n tensor $\mathcal{A} = (a_{i_1 i_2 \cdots i_m})$ is a multidimensional array with n^m complex entries, where $i_j \in [n], j \in [m]$. Let $\mathbb{C}^{[m,n]}$ denote the set of order m dimension n tensors over complex field \mathbb{C} , and \mathbb{C}^n be the set of dimension n column vectors over \mathbb{C} .

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.09.041} 0024-3795 \ensuremath{\oslash}\ 0216 \ Elsevier \ Inc. \ All \ rights \ reserved.$

E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

In 2005, Qi [1] and Lim [2] introduced the notion of eigenvalue for tensors, independently. For $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{C}^{[m,n]}$, $x = (x_1, \ldots, x_n)^{\mathrm{T}} \in \mathbb{C}^n$, $\mathcal{A}x^{m-1}$ is a dimension n column vector with entries

$$(\mathcal{A}x^{m-1})_i = \sum_{i_2,\dots,i_m=1}^n a_{ii_2\cdots i_m} x_{i_2}\cdots x_{i_m}, \ i \in [n].$$

If there exists a nonzero vector $x = (x_1, \ldots, x_n)^{\mathrm{T}} \in \mathbb{C}^n$ and a number $\lambda \in \mathbb{C}$ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]},\tag{1}$$

then λ is called an eigenvalue of \mathcal{A} , x is called an eigenvector of \mathcal{A} corresponding to λ , where $x^{[m-1]} = (x_1^{m-1}, \dots, x_n^{m-1})^{\mathrm{T}}$. Let $\sigma(\mathcal{A})$ denote the set of all eigenvalues of \mathcal{A} , $\rho(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma(\mathcal{A})\}$ be the spectral radius of \mathcal{A} , $r_i(\mathcal{A}) = \sum_{i_2,\dots,i_m=1}^n |a_{ii_2\cdots i_m}|,$ $R_i(\mathcal{A}) = r_i(\mathcal{A}) - |a_{ii\cdots i}|.$

Let $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ be a hypergraph with vertex set $V(\mathcal{H})$ and edge set $E(\mathcal{H})$. If every edge of \mathcal{H} contains exactly k distinct vertices, then \mathcal{H} is called a k-uniform hypergraph. The degree of a vertex i in \mathcal{H} is the number of edges incident with i, denoted by d_i . In 2012, Cooper et al. [15] gave the concept of the adjacency tensor of a uniform hypergraph. For a k-uniform hypergraph \mathcal{H} , the adjacency tensor $\mathcal{A}_{\mathcal{H}} = (a_{i_1 i_2 \cdots i_k})$ is an order k dimension $|V(\mathcal{H})|$ tensor with entries

$$a_{i_1i_2\cdots i_k} = \begin{cases} \frac{1}{(k-1)!}, & \{i_1, i_2, \dots, i_k\} \in E(\mathcal{H}), \\ 0, & otherwise. \end{cases}$$

Eigenvalues of $\mathcal{A}_{\mathcal{H}}$ are called eigenvalues of \mathcal{H} , the spectral radius of $\mathcal{A}_{\mathcal{H}}$ is called the spectral radius of \mathcal{H} , denoted by $\rho(\mathcal{H})$.

In recent years, the spectral theory of tensors and spectral hypergraph theory have attracted much attention. In 2005, Qi [1] gave the Geršgorin-type eigenvalue inclusion sets for real symmetric tensor $\mathcal{A} = (a_{i_1 i_2 \cdots i_m})$ as follows:

$$\sigma(\mathcal{A}) \subseteq \mathcal{G}(\mathcal{A}) = \bigcup_{i=1}^{n} \{ z \in \mathbb{C} : |z - a_{i\cdots i}| \le R_i(\mathcal{A}) \},$$
(2)

this result also holds for $\mathcal{A} \in \mathbb{C}^{[m,n]}$ (see [10]). In 2015, Bu et al. [14] established the Brualdi-type eigenvalue inclusion sets of tensors via a digraph. In 2016, Li et al. [9] gave a variation of Brauer-type eigenvalue inclusion sets for tensors. In addition, many researchers are interested in the spectral radius of nonnegative tensors, and give various bounds to estimate the spectral radius (see [10–13]). For a k-uniform hypergraph \mathcal{H} with maximum degree Δ , Yuan et al. [16] gave the bounds on $\rho(\mathcal{H})$ via degrees of vertices, Lin et al. [17] showed upper bounds for $\rho(\mathcal{H})$ in terms of the average 2-degrees of vertices, Li et al. [18] obtained the bounds of $\Delta - \rho(\mathcal{H})$ in terms of some graph parameters. Download English Version:

https://daneshyari.com/en/article/4598406

Download Persian Version:

https://daneshyari.com/article/4598406

Daneshyari.com