

Unitarily invariant norm inequalities for elementary operators involving G_1 operators

Fuad Kittaneh^a, Mohammad Sal Moslehian^{b,*}, Mohammad Sababheh^c

^a Department of Mathematics, The University of Jordan, Amman, Jordan

^b Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad

91775, Iran

^c Department of Basic Sciences, Princess Sumaya University for Technology, Amman, Jordan

A R T I C L E I N F O

Article history: Received 13 August 2016 Accepted 9 October 2016 Available online 13 October 2016 Submitted by R. Bhatia

MSC: 15A60 30E20 47A30 47B10 47B15 47B20

Keywords: G_1 operator Unitarily invariant norm Elementary operator Perturbation Analytic function

ABSTRACT

In this paper, motivated by perturbation theory of operators, we present some upper bounds for |||f(A)Xg(B) + X||| in terms of ||||AXB| + |X|||| and |||f(A)Xg(B) - X||| in terms of ||||AX| + |XB||||, where A, B are G_1 operators, $||| \cdot |||$ is a unitarily invariant norm and f, g are certain analytic functions. Further, we find some new upper bounds for the Schatten 2-norm of $f(A)X \pm Xg(B)$. Several special cases are discussed as well.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: fkitt@ju.edu.jo (F. Kittaneh), moslehian@um.ac.ir (M.S. Moslehian), sababheh@psut.edu.jo, sababheh@yahoo.com (M. Sababheh).

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the C^* -algebra of all bounded linear operators on a separable complex Hilbert space \mathscr{H} equipped with the operator norm $\|\cdot\|$. If dim $\mathscr{H} = n$, we can identify $\mathbb{B}(\mathscr{H})$ with the matrix algebra \mathbb{M}_n of all $n \times n$ matrices with entries in the complex field \mathbb{C} . If $z \in \mathbb{C}$, then we write z instead of zI, where I denotes the identity operator on \mathscr{H} . We write $A \geq 0$ when A is positive (positive semi-definite for matrices). For any operator A in the algebra $\mathbb{K}(\mathscr{H})$ of all compact operators, we denote by $\{s_j(A)\}$ the sequence of singular values of A, i.e. the eigenvalues $\lambda_j(|A|)$, where $|A| = (A^*A)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity. If rank A = n, we put $s_k(A) = 0$ for any k > n.

In addition to the operator norm $\|\cdot\|$, which is defined on whole of $\mathbb{B}(\mathscr{H})$, a unitarily invariant norm is a map $|||\cdot||| : \mathbb{K}(\mathscr{H}) \to [0,\infty]$ given by $|||A||| = g(s_1(A), s_2(A), \cdots)$, where g is a symmetric norming function. The set $\mathcal{C}_{|||\cdot|||} = \{A \in \mathbb{K}(\mathscr{H}) : |||A||| < \infty\}$ is a closed self-adjoint ideal \mathcal{J} of $\mathbb{B}(\mathscr{H})$ containing finite rank operators. It enjoys the properties:

(i) For all $A, B \in \mathbb{B}(\mathscr{H})$ and $X \in \mathcal{J}$,

$$|||AXB||| \le ||A|| \ |||X||| \ ||B|| \ . \tag{1.1}$$

(ii) If X is a rank one operator, then

$$|||X||| = ||X||.$$
(1.2)

Inequality (1.1) implies that |||UAV||| = |||A||| for all unitary matrices $U, V \in \mathbb{B}(\mathscr{H})$ and all $A \in \mathcal{J}$. In addition, employing the polar decomposition of X = W|X| with W a partial isometry and (1.1), we have

$$|||X||| = ||| |X| |||.$$
(1.3)

The Ky Fan norms as an example of unitarily invariant norms are defined by $||A||_{(k)} = \sum_{j=1}^{k} s_j(A)$ for k = 1, 2, ... The Ky Fan dominance theorem [3, Theorem IV.2.2] states that $||A||_{(k)} \leq ||B||_{(k)}$ (k = 1, 2, ...) if and only if $|||A||| \leq |||B|||$ for all unitarily invariant norms $||| \cdot |||$; see [3,9] for more information on unitarily invariant norms. For the sake of brevity, we will not explicitly mention this norm ideal. Thus, when we consider |||A|||, we are assuming that A belongs to the norm ideal associated with $|||\cdot|||$. It is known that the Schatten *p*-norms $||A||_p = \left(\sum_{j=1}^{\infty} s_j^p(A)\right)^{1/p}$ are unitarily invariant for $1 \leq p < \infty$; cf. [3, Section IV]. We use the notation $A \oplus B$ for the diagonal block matrix diag(A, B). Its singular values are $s_1(A), s_1(B), s_2(A), s_2(B), \cdots$. It is evident that

$$||A \oplus B|| = \max\{||A||, ||B||\}$$
 and $||A \oplus B||_p = (||A||_p^p + ||B||_p^p)^{1/p}$. (1.4)

Download English Version:

https://daneshyari.com/en/article/4598418

Download Persian Version:

https://daneshyari.com/article/4598418

Daneshyari.com