

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Distance spectral radius of uniform hypergraphs

LINEAR ALGEBI and its

lications

Hongying Lin, Bo Zhou*

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO

Article history: Received 23 January 2016 Accepted 6 June 2016 Available online 17 June 2016 Submitted by R. Brualdi

MSC: 05C50 05C65 15A18

Keywords:

Distance spectral radius Uniform hypergraph Uniform hypertree Distance matrix Graft transformation

ABSTRACT

We study the effect of three types of graft transformations to increase or decrease the distance spectral radius of connected uniform hypergraphs, and we determine the unique k-uniform hypertrees with maximum, second maximum, minimum and second minimum distance spectral radius, respectively.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraph G consists of a vertex set V(G) and an edge set E(G), where V(G) is nonempty, and each edge $e \in E(G)$ is a nonempty subset of V(G), see [2]. The order of G is |V(G)|. For an integer $k \ge 2$, we say that a hypergraph G is k-uniform if every edge has size k. A (simple) graph is a 2-uniform hypergraph. The degree of a vertex v in G, denoted by $d_G(v)$, is the number of edges of G which contain v.

* Corresponding author.

http://dx.doi.org/10.1016/j.laa.2016.06.011 0024-3795/© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: hongying0908@126.com (H. Lin), zhoubo@scnu.edu.cn (B. Zhou).

For $u, v \in V(G)$, a walk from u to v in G is defined to be a sequence of vertices and edges $(v_0, e_1, v_1, \ldots, v_{p-1}, e_p, v_p)$ with $v_0 = u$ and $v_p = v$ such that edge e_i contains vertices v_{i-1} and v_i , and $v_{i-1} \neq v_i$ for $i = 1, \ldots, p$. The value p is the length of this walk. A path is a walk with all v_i distinct and all e_i distinct. A cycle is a walk containing at least two edges, all e_i are distinct and all v_i are distinct except $v_0 = v_p$. A vertex $u \in V(G)$ is viewed as a path (from u to u) of length 0. If there is a path from u to v for any $u, v \in V(G)$, then we say that G is connected. A hypertree is a connected hypergraph with no cycles. Note that a k-uniform hypertree with m edges always has order 1 + (k-1)m.

Let G be a connected k-uniform hypergraph with $V(G) = \{v_1, \ldots, v_n\}$. For $u, v \in V(G)$, the distance between u and v is the length of a shortest path from u to v in G, denoted by $d_G(u, v)$. In particular, $d_G(u, u) = 0$. The diameter of G is the maximum distance between all vertex pairs of G. The distance matrix of G is the $n \times n$ matrix $D(G) = (d_G(u, v))_{u,v \in V(G)}$. The eigenvalues of D(G) are called the distance eigenvalues of G. Since D(G) is real and symmetric, the distance eigenvalues of G are real. The distance spectral radius of G, denoted by $\rho(G)$, is the largest distance eigenvalue of G. Note that D(G) is an irreducible nonnegative matrix. The Perron–Frobenius theorem implies that $\rho(G)$ is simple, and there is a unique positive unit eigenvector corresponding to $\rho(G)$, which is called the distance Perron vector of G, denoted by x(G).

The study of distance eigenvalues of 2-uniform hypergraphs (ordinary graphs) dates back to the classical work of Graham and Pollack [5], Graham and Lovász [4] and Edelberg et al. [3]. Ruzieh and Powers [7] showed that among connected 2-uniform hypergraphs of order n, the path P_n is the unique graph with maximum distance spectral radius. Stevanović and Ilić [9] showed that among trees of order n, the star S_n is the unique tree with minimum distance spectral radius. Nath and Paul [6] determined the unique trees with maximum distance spectral radius among trees with fixed matching number. For more details on distance eigenvalues and especially on distance spectral radius of 2-uniform hypergraphs, one may refer to the recent survey of Aouchiche and Hansen [1] and references therein. Sivasubramanian [8] gave a formula for the inverse of a few q-analogs of the distance matrix of a 3-uniform hypertree.

For a k-uniform hypertree G with $V(G) = \{v_1, \ldots, v_n\}$, if $E(G) = \{e_1, \ldots, e_m\}$, where $e_i = \{v_{(i-1)(k-1)+1}, \ldots, v_{(i-1)(k-1)+k}\}$ for $i = 1, \ldots, m$, then we call G a k-uniform loose path, denoted by $P_{n,k}$.

For a k-uniform hypertree G of order n, if there is a partition of the vertex set V(G)into $\{u\} \cup V_1 \cup \cdots \cup V_m$ such that $|V_1| = \cdots = |V_m| = k - 1$, and $E(G) = \{\{u\} \cup V_i : 1 \le i \le m\}$, then we call G is a (k-uniform) hyperstar (with center u), denoted by $S_{n,k}$. In particular, $S_{1,k}$ is a hypergraph with a single vertex and $S_{k,k}$ is a k-uniform hypergraph with a single edge.

In this paper, we study the effect of three types of graft transformations to increase or decrease the distance spectral radius of connected k-uniform hypergraphs. As applications, we show that $P_{n,k}$ and $S_{n,k}$ are the unique k-uniform hypertrees with maximum and minimum distance spectral radius, respectively, and we also determine the unique Download English Version:

https://daneshyari.com/en/article/4598493

Download Persian Version:

https://daneshyari.com/article/4598493

Daneshyari.com