Distance spectral radius of uniform hypergraphs

Hongying Lin, Bo Zhou*
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

A R T I C L E I N F O

Article history:

Received 23 January 2016
Accepted 6 June 2016
Available online 17 June 2016
Submitted by R. Brualdi

MSC:

05C50
05C65
15A18

Keywords:
Distance spectral radius
Uniform hypergraph
Uniform hypertree
Distance matrix
Graft transformation

A B S T R A C T

We study the effect of three types of graft transformations to increase or decrease the distance spectral radius of connected uniform hypergraphs, and we determine the unique k-uniform hypertrees with maximum, second maximum, minimum and second minimum distance spectral radius, respectively.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraph G consists of a vertex set $V(G)$ and an edge set $E(G)$, where $V(G)$ is nonempty, and each edge $e \in E(G)$ is a nonempty subset of $V(G)$, see [2]. The order of G is $|V(G)|$. For an integer $k \geq 2$, we say that a hypergraph G is k-uniform if every edge has size k. A (simple) graph is a 2-uniform hypergraph. The degree of a vertex v in G, denoted by $d_{G}(v)$, is the number of edges of G which contain v.

[^0]For $u, v \in V(G)$, a walk from u to v in G is defined to be a sequence of vertices and edges $\left(v_{0}, e_{1}, v_{1}, \ldots, v_{p-1}, e_{p}, v_{p}\right)$ with $v_{0}=u$ and $v_{p}=v$ such that edge e_{i} contains vertices v_{i-1} and v_{i}, and $v_{i-1} \neq v_{i}$ for $i=1, \ldots, p$. The value p is the length of this walk. A path is a walk with all v_{i} distinct and all e_{i} distinct. A cycle is a walk containing at least two edges, all e_{i} are distinct and all v_{i} are distinct except $v_{0}=v_{p}$. A vertex $u \in V(G)$ is viewed as a path (from u to u) of length 0 . If there is a path from u to v for any $u, v \in V(G)$, then we say that G is connected. A hypertree is a connected hypergraph with no cycles. Note that a k-uniform hypertree with m edges always has order $1+(k-1) m$.

Let G be a connected k-uniform hypergraph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. For $u, v \in$ $V(G)$, the distance between u and v is the length of a shortest path from u to v in G, denoted by $d_{G}(u, v)$. In particular, $d_{G}(u, u)=0$. The diameter of G is the maximum distance between all vertex pairs of G. The distance matrix of G is the $n \times n$ matrix $D(G)=\left(d_{G}(u, v)\right)_{u, v \in V(G)}$. The eigenvalues of $D(G)$ are called the distance eigenvalues of G. Since $D(G)$ is real and symmetric, the distance eigenvalues of G are real. The distance spectral radius of G, denoted by $\rho(G)$, is the largest distance eigenvalue of G. Note that $D(G)$ is an irreducible nonnegative matrix. The Perron-Frobenius theorem implies that $\rho(G)$ is simple, and there is a unique positive unit eigenvector corresponding to $\rho(G)$, which is called the distance Perron vector of G, denoted by $x(G)$.

The study of distance eigenvalues of 2-uniform hypergraphs (ordinary graphs) dates back to the classical work of Graham and Pollack [5], Graham and Lovász [4] and Edelberg et al. [3]. Ruzieh and Powers [7] showed that among connected 2-uniform hypergraphs of order n, the path P_{n} is the unique graph with maximum distance spectral radius. Stevanović and Ilić [9] showed that among trees of order n, the star S_{n} is the unique tree with minimum distance spectral radius. Nath and Paul [6] determined the unique trees with maximum distance spectral radius among trees with fixed matching number. For more details on distance eigenvalues and especially on distance spectral radius of 2-uniform hypergraphs, one may refer to the recent survey of Aouchiche and Hansen [1] and references therein. Sivasubramanian [8] gave a formula for the inverse of a few q-analogs of the distance matrix of a 3 -uniform hypertree.

For a k-uniform hypertree G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, if $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$, where $e_{i}=\left\{v_{(i-1)(k-1)+1}, \ldots, v_{(i-1)(k-1)+k}\right\}$ for $i=1, \ldots, m$, then we call G a k-uniform loose path, denoted by $P_{n, k}$.

For a k-uniform hypertree G of order n, if there is a partition of the vertex set $V(G)$ into $\{u\} \cup V_{1} \cup \cdots \cup V_{m}$ such that $\left|V_{1}\right|=\cdots=\left|V_{m}\right|=k-1$, and $E(G)=\left\{\{u\} \cup V_{i}: 1 \leq\right.$ $i \leq m\}$, then we call G is a (k-uniform) hyperstar (with center u), denoted by $S_{n, k}$. In particular, $S_{1, k}$ is a hypergraph with a single vertex and $S_{k, k}$ is a k-uniform hypergraph with a single edge.

In this paper, we study the effect of three types of graft transformations to increase or decrease the distance spectral radius of connected k-uniform hypergraphs. As applications, we show that $P_{n, k}$ and $S_{n, k}$ are the unique k-uniform hypertrees with maximum and minimum distance spectral radius, respectively, and we also determine the unique

https://daneshyari.com/en/article/4598493

Download Persian Version:

https://daneshyari.com/article/4598493

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lhongying0908@126.com (H. Lin), zhoubo@scnu.edu.cn (B. Zhou).

