Some remarks about acyclic and tridiagonal Birkhoff polytopes

Duško Jojić
Faculty of Science, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina

A R T I C L E I N F O

Article history:

Received 16 September 2015
Accepted 20 January 2016
Available online 28 January 2016
Submitted by R. Brualdi

MSC:

05A15
15A51
52B05

Keywords:
Birkhoff polytope
f-vector
Bicolored graphs
Tridiagonal matrices
Combinatorial types

Abstract

For a given tree T we consider the facial structure of the acyclic Birkhoff polytope $\Omega(T)$. We also determine the f-vector of the polytope Ω_{n}^{t} consisting of all tridiagonal doubly stochastic matrices of order n. Finally, we count the number of combinatorially distinct faces of Ω_{n}^{t} in each dimension.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω_{n} denote the set of all n-square doubly stochastic matrices (matrices whose entries are nonnegative and the sum of elements in each row and in each column is equal to 1). A well-known result of Birkhoff [3] and von Neumann [15] states that Ω_{n} is a convex $(n-1)^{2}$-dimensional polytope called the Birkhoff polytope. This polytope is the

[^0]convex hull of all $n \times n$ permutation matrices. An intensive investigation of combinatorial and geometric properties of Ω_{n} has been done in [4-6].

The face lattice of Ω_{n} is described in [2] as the poset of all elementary subgraphs of complete bipartite graph $K_{n, n}$ ordered by inclusion. A graph G with $2 n$ vertices is an elementary graph if every edge of G is contained in some perfect matching of G. Elementary graphs can be also described by ear decompositions. A connected bipartite graph G has an ear-decomposition if

$$
G=x \cup P_{1} \cup P_{2} \cup \cdots \cup P_{k},
$$

where x is an edge of G and P_{i} is a path connecting nodes from different color classes of $G_{i-1}=x \cup P_{1} \cup \cdots \cup P_{i-1}$, for all $i=1, \ldots, k$. Note that the length of P_{i} is odd. A bipartite graph G is elementary if and only if each component of G has an ear decomposition, see Theorem 4.1.6 in [14]. More details about elementary graphs can be found in [2] and [14].
G. Dahl in [13] considers the tridiagonal Birkhoff polytope

$$
\Omega_{n}^{t}=\left\{A \in \Omega_{n}: A \text { is tridiagonal }\right\}
$$

and shows that Ω_{n}^{t} is an $(n-1)$-dimensional polytope. The number of vertices of any face of Ω_{n}^{t} is related with the number of alternating parity sequences in [12].

For a given tree T with n vertices in [8] the acyclic Birkhoff polytope $\Omega_{n}(T)$ is defined as the subset of Ω_{n} containing all matrices whose support corresponds to some subset of the set of edges of T. Note that $\Omega_{n}^{t}=\Omega_{n}\left(P_{n}\right)$, where P_{n} is a path with n nodes.

2. The face lattice of $\Omega_{n}(T)$

A nice combinatorial description of the faces of $\Omega_{n}(T)$ in the terms of bicolored partitions of T is introduced in [8]. A bicolored subgraph of a graph G is a subgraph G^{\prime} for which the set of nodes $V\left(G^{\prime}\right)$ is partitioned into two sets: closed nodes (these nodes are colored black) and open nodes (colored white). The faces of $\Omega_{n}(T)$ correspond to all partitions of T into bicolored subgraphs of the following three types:
(i) A closed (black) node •
(ii) An open edge o-० that connects two open (white) nodes.
(iii) Any connected bicolored subgraph of T, with all endpoints closed (black), different from the previous two types.

Example 1. For the tree T on Fig. $1, \Omega_{6}(T)$ contains all matrices of the form

$$
\left[\begin{array}{cccccc}
1-x_{1} & 0 & x_{1} & 0 & 0 & 0 \\
0 & 1-x_{2} & x_{2} & 0 & 0 & 0 \\
x_{1} & x_{2} & 1-x_{1}-x_{2}-x_{3} & 0 & x_{3} & 0 \\
0 & 0 & 0 & 1-x_{4} & x_{4} & 0 \\
0 & 0 & x_{3} & x_{4} & 1-x_{3}-x_{4}-x_{5} & x_{5} \\
0 & 0 & 0 & 0 & x_{5} & 1-x_{5}
\end{array}\right] ;
$$

where $1 \geqslant x_{i} \geqslant 0, x_{1}+x_{2}+x_{3} \leqslant 1$ and $x_{3}+x_{4}+x_{5} \leqslant 1$.

https://daneshyari.com/en/article/4598718

Download Persian Version:

https://daneshyari.com/article/4598718

Daneshyari.com

[^0]: E-mail address: ducci68@teol.net.

