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In this paper we determine those bijective maps of the set of all 
positive definite n ×n complex matrices which preserve a given 
Bregman divergence corresponding to a differentiable convex 
function that satisfies certain conditions. We cover the cases 
of the most important Bregman divergences and present the 
precise structure of the mentioned transformations. Similar 
results concerning Jensen divergences and their preservers are 
also given.
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1. Introduction

In a series of papers [3,8,11,9] the first author and his coauthors described the struc-
tures of surjective maps of the positive definite cones in matrix algebras, or in operator
algebras which can be considered generalized isometries meaning that they are transfor-
mations which preserve “distances” with respect to given so-called generalized distance 
measures. This latter notion stands for any function d : X ×X → [0, ∞) on any set X
with the mere property that for x, y ∈ X we have d(x, y) = 0 if and only if x = y. We 
recall that in several areas of mathematics not only metrics are used to measure nearness 
of points but also more general functions of this latter kind.

In [11,9] the considered generalized distance measures are of the form d = dN,g, where 
N(.) is a unitarily invariant norm on the underlying matrix algebra or operator algebra, 
g : (0, ∞) → C is a continuous function with the properties

(a1) g(y) = 0 if and only if y = 1;
(a2) there exists a constant K > 1 such that 

∣∣g (y2)∣∣ ≥ K |g(y)|, y > 0,

and the generalized distance measure dN,g is defined by

dN,g(X,Y ) = N
(
g
(
Y −1/2XY −1/2

))
(1)

for all positive invertible elements X, Y of the underlying algebra. In the mentioned 
papers one can see several important examples of that sort of generalized distance mea-
sures, many of them having backgrounds in the differential geometry of positive definite 
matrices or operators. The basic tools in describing the structure of the correspond-
ing generalized isometries have been so-called generalized Mazur–Ulam type theorems 
and descriptions of certain algebraic isomorphisms (Jordan triple isomorphisms) of the 
positive definite cones in question.

In the present paper we determine the structures of generalized isometries with respect 
to other important types of generalized distance measures. Namely, here we consider 
Bregman divergences and Jensen divergences. These types of divergences have wide 
ranging applications in several areas of mathematics. For example, in the recent vol-
ume [12] on matrix information geometry 3 chapters are devoted to the study of Bregman 
divergences. One feature of Jensen divergences which justifies their importance is that 
Bregman divergences can be considered as asymptotic Jensen divergences (see Section 6.2 
in [12]). We further mention that the famous Stein’s loss and Umegaki’s relative entropy 
are among the most important Bregman divergences. Our basic tool in this paper to 
determine the corresponding preserver transformations is, just as above, also algebraic 
in nature but rather different from what we have mentioned in the previous paragraph. 
Namely, here we use order isomorphisms.

Before presenting the results we fix the notation and terminology. In what follows Mn

denotes the algebra of all n ×n complex matrices and Pn stands for the positive definite 
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