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1. Introduction

Let K be a field of characteristic 0 and let M, (K') denote a K-algebra of nxn matrices
over K. It becomes a Lie algebra under Lie product [A, B] = AB — BA. We denote it
by gl,,(K). By sl,(K) we denote a Lie subalgebra of gl,,(K) consisting of all matrices
A with tr(A) = 0. It is known that sl,,(K) is a simple Lie algebra (it has no nontrivial
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ideals) of dimension n? —1 [1]. The direct limit sl (K) of algebras sl,, (K) under natural
embeddings sl,,(K) — sl,,4+1(K), given by:

A_)(A 0)
010

is a simple Lie algebra of countable dimension. It can be viewed as a Lie algebra of
infinite N x N matrices A, which have only finite number of nonzero entries and such
that tr(A) = 0. Note that the trace ‘tr’ is a well defined function in this case since there
is finitely many nonzero entries on the main diagonal.

In this note, we describe a new Lie algebra of infinite matrices of uncountable dimen-
sion and prove its simplicity.

Let K be a field of characteristic 0. Denote by M,(co,K) a set of infinite N x N
matrices over K having only finite number of nonzero rows. We note that a matrix in
M. ¢(00, K) can have infinitely many nonzero coefficients in a nonzero row. It is clear that
usual addition of two matrices A = (a;;), B = (bij) € Mys(00,K), A+ B = (a;; + bij), is
well defined. Similarly, the multiplication of a matrix A from the left by a scalar a € K,
given by a- A = (a-a,j), is also well defined. Looking at a standard matrix multiplication
of two matrices C' = A - B, given by the formula c;; = 21?;1 airbr; we see that in this
infinite sum there is only a finite number of nonzero summands a;;by; and thus ¢;; is
well defined. So, M,;(o0, K) is an associative K-algebra.

Thus M, (00, K), with respect to Lie product [A4, B] = AB — BA, forms a Lie algebra
denoted by gl,¢(c0, K). Every matrix U in gl,¢(co, K) has only finite number of nonzero
entries on the main diagonal, we can define a trace tr(U) as a sum of these nonzero
diagonal entries. By sl,t(00, K) we denote a Lie subalgebra of gl,¢(co, K) consisting of
matrices U such that tr(U) = 0.

Our main result is the following

Theorem 1.1. sl,¢(c0, K) is a simple Lie algebra of uncountable dimension.

For any ¢, j € N denote by E;;, the matrix unit, the infinite matrix whose only nonzero
entry is 1 in the (¢, j) position. Sometimes, if there is no ambiguity we denote by E;; its
finite n x n analogue. The product of any matrix units F;; and Fy; is the following

[Eij, Er] = 01 Eil — 01 Ej,

where §;; — Kronecker’s symbol. If 4, j, k are pairwise distinct, then we have a known
Chevalley formula

(Eik, Exj] = Eij.

The set {E;; | 4,7 € N} forms a basis of gl (K), and the set {E;;, B, — Ess |
i,5,m,8 € Nyi # j,r # s} forms a generating set for sl (K). Thus glo(K) and sl (K)
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