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In this paper, we discuss the backward error for the symmetric
generalized inverse eigenvalue problem, which extends the result
of Sun (1999) [10]. The optimal backward error is defined for
symmetric generalized inverse eigenvalue problem with respect to
an approximate solution, and the upper and lower bounds are
derived for the optimal backward error. The expressions may be
useful for testing the stability of practical algorithms.
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1. Introduction

Throughout this paper, we use R
n×n
n to denote the set of n × n real nonsingular matrices, Sn the

set of n × n real symmetric matrices and Dn the set of n × n real diagonal matrices. ‖| · ‖| denotes any
unitarily invariant norm, and ‖ · ‖2 the spectral norm and the Euclidean vector norm. The superscript
T is for transpose. The symbol I is the n × n identity matrix. A > 0 (A � 0) denotes that A is a
symmetric positive definite matrix (symmetric positive semidefinite matrix). For four matrices A, B ,
C and D ∈ Sn , the relation (A, B) � (C, D) means that A, B and C , D have the same generalized
eigenvalue. A � B means that A − B is positive semidefinite matrix.
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Consider the following symmetric generalized inverse eigenvalue problem:

Problem GIEP. Given 2n + 2 real symmetric n × n matrices {Ai}n
i=0, {Bi}n

i=0 and n real numbers λ1 �
λ2 � · · · � λn , find c = (c1, c2, . . . , cn) with real components such that(

A(c), B(c)
)� (Λ, I),

where

A(c) := A0 +
n∑

i=1

ci Ai, B(c) := B0 +
n∑

i=1

ci Bi � α I,

Λ = diag(λ1, λ2, . . . , λn) and α > 0.

Generalized inverse eigenvalue problems arise from a remarkable variety of applications, including
the discrete analogue of inverse Sturm–Liouville problems [3] and structural design [4]. A special
case of the GIEP in which B(c) = In is known as the algebraic inverse eigenvalue problem [3,4]. One
may refer to the survey paper [5] and [6] for the different applications and numerical methods of
GIEPs. Sun [10] defined the backward error of the symmetric matrix inverse eigenvalue problems and
derived an explicit expression for it. Liu and Bai [9] extended Sun’s approach to more general inverse
eigenvalue problems and derived the upper and lower bounds for the optimal backward error. Chen
[2] extended Sun’s approach to the inverse singular value problem and derived an explicit expression
for the optimal backward error. However, the optimal backward error of the symmetric generalized
inverse eigenvalue problem is rarely treated in the literature. In this paper we consider the optimal
backward error of the symmetric generalized inverse eigenvalue problem and the upper and lower
bounds are derived for the optimal backward error, which extend the result of Sun [10].

Let c̃ = (c̃1, c̃2, . . . , c̃n) be an approximate solution to Problem GIEP. In general, there are many
backward perturbations �A0,�A1, . . . ,�An,�B0,�B1, . . . ,�Bn ∈ Sn , and �Λ ∈Dn such that(

A0 + �A0 +
n∑

i=1

c̃i(Ai + �Ai), B0 + �B0 +
n∑

i=1

c̃i(Bi + �Bi)

)
� (Λ + �Λ, I),

and

B0 + �B0 +
n∑

i=1

c̃i(Bi + �Bi) � α I.

One may well ask: How close is the nearest Problem GIEP for which c̃ is the solution?
In order to define backward errors for measuring the distance between the original problem and

the perturbed problems, we define the normwise backward error η(c̃) by

η(c̃) = min
(�A0,�A1,...,�An,�B0,�B1,...,�Bn,�Λ)∈G

[
n∑

k=0

(‖|�Ak‖|
‖|Ak‖|

)2

+
n∑

k=0

(‖|�Bk‖|
‖|Bk‖|

)2

+
(‖|�Λ‖|

‖|Λ‖|
)2
] 1

2

(1)

where

G =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�A0,�A1, . . . ,�An,�B0,�B1, . . . ,�Bn,�Λ):

(A0 + �A0 +
n∑

k=1

c̃k(Ak + �Ak), B0 + �B0 +
n∑

k=1

c̃k(Bk + �Bk)) � (Λ + �Λ, I)

�A0,�A1, . . . ,�An,�B0,�B1, . . . ,�Bn ∈ Sn, �Λ ∈ Dn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(2)
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