On a conjecture concerning integral real roots of certain cubic polynomials ${ }^{\hat{\alpha}}$

Junhua He
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China

A R T I C L E I N F O

Article history:

Received 23 September 2013
Accepted 19 December 2013
Available online 7 January 2014
Submitted by R. Brualdi

MSC:

05C50
14H52
Keywords:
Unicyclic graphs
Elliptic curve
Rational solutions

A B S T R A C T

In this paper, we determine all the rational pairs (x, n) such that

$$
\begin{aligned}
f_{n}(x)= & 3 x^{3}+(7-10 n) x^{2}+2\left(6 n^{2}-11 n+8\right) x \\
& -\left(4 n^{3}-6 n^{2}-10 n+24\right)=0
\end{aligned}
$$

It follows that for each positive integer $n \geqslant 5$, there is no integer solution x for the polynomial. This confirms a conjecture of Li et al. concerning the uniqueness of a class of optimal graphs in the study of an extremal graph theory problem.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In [1], Li , Tam and Su considered the problem of maximizing (also, minimizing) the absolute values of the signless Laplacian coefficients among all unicyclic graphs of a given order. They found that optimal graph for the minimization problem is unique. Believing that the optimal graph for the maximization problem is also unique, they posed the following conjecture:

[^0]Conjecture 1. For every positive integer $n \geqslant 5$, the unique real root of the cubic polynomial

$$
f_{n}(x)=3 x^{3}+(7-10 n) x^{2}+2\left(6 n^{2}-11 n+8\right) x-\left(4 n^{3}-6 n^{2}-10 n+24\right)
$$

is never an integer.
In this paper, we prove the following.
Theorem 1. The rational solutions (x, n) of the equation $f_{n}(x)=0$ are:

$$
(2,2),(3,3),(4,4),(2,3),(3,4),(8 / 3,3),(2,5 / 2),(3,7 / 2) .
$$

By the above theorem, Conjecture 1 is true. Thus, there is a unique optimal graph for the maximization problem on unicyclic graphs.

2. Proof of Theorem 1

For notational convenience, we let

$$
g(x, y):=f_{y}(x)=3 x^{3}+(7-10 y) x^{2}+2\left(6 y^{2}-11 y+8\right) x-\left(4 y^{3}-6 y^{2}-10 y+24\right) .
$$

We begin with the following.
Lemma 1. The finite rational points of the elliptic curve E with equation $Y^{2}=X(X-$ 1) $(X+3)$ are:

$$
(0,0),(1,0),(-3,0),(-1,2),(-1,-2),(3,6),(3,-6)
$$

Proof. It is well known [2] that the set of all the rational solutions of the equation together with an infinite point \mathcal{O} forms the Mordell-Weil group $E(\mathbb{Q})$ of E, substituting X by $X_{1}-1$ we will obtain the minimal Weierstrass equation of E :

$$
E^{\prime}: \quad Y^{2}=X_{1}^{3}-X_{1}^{2}-4 X_{1}+4
$$

the computation by online database LMFDB [3] shows that the Mordell-Weil group $E^{\prime}(\mathbb{Q})$ of E^{\prime} is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, and we have

$$
E^{\prime}(\mathbb{Q})=\{(1,0),(2,0),(-2,0),(0,2),(0,-2),(4,6),(4,-6), \mathcal{O}\}
$$

hence the finite rational points of E are exactly those listed in the lemma.
Proof of Theorem 1. Let $x=S+3, y=S+T+3$. By a direct computation one can show that

$$
g(x, y)=S^{3}+2 T S^{2}+(2 T-1) S-2 T(T-1)(2 T-1)
$$

https://daneshyari.com/en/article/4599658

Download Persian Version:
https://daneshyari.com/article/4599658

Daneshyari.com

[^0]: ${ }^{\text {in }}$ Research supported by the fundamental research funds for Chinese universities under Grant ZYGX2012J120.

 E-mail address: hejunhua@uestc.edu.cn.

