
LASER: Latency-Aware Segment Relocation for non-volatile memory

Myungsik Kim a, Seongjin Lee a, Jinchul Shin b, Youjip Won a,⇑
a Department of Computer Science Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, Republic of Korea
b SK Planet Co., Ltd., Bundang-gu, 264, Pangyo-ro, Seongnam-si, Gyeonggi-do, Republic of Korea

a r t i c l e i n f o

Article history:
Received 2 December 2014
Received in revised form 15 May 2015
Accepted 27 June 2015
Available online 4 July 2015

Keywords:
Latency-Aware Segment Relocation
LASER
Nonvolatile Random Access Memory
(NVRAM)
Fast boot
Embedded linux

a b s t r a c t

In this work, we develop Latency-Aware Segment Relocation (LASER) which relocates a subset of seg-
ments of binary image to NVRAM to reduce program launch latency. A significant amount of time is spent
on loading the binary image to main memory and initializing it. We develop a new system startup mech-
anism, to reduce the boot time by using selectively relocating read-only sections in NVRAM. We develop a
model to determine the set of segments to be loaded into NVRAM given the maximum launch latency
constraint and the physical latency of NVRAM. We implement LASER scheme to commercially available
embedded systems (S5PC100 and Zynq7020). LASER-enabled systems achieve 54% and 38% reduction in
boot time in S5PC100 and Zynq7020 systems, respectively.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many devices, including mobile devices [1,2], video consumer
electronics [3], and home appliances, [4] are implemented on an
embedded system. As computing power of embedded devices
increases, the devices are becoming more complex not only to
accommodate user requirements but also to provide better user
experience and services. Higher complexity in embedded systems
results in larger program size which leads to longer program load-
ing time and longer boot time. In a conventional embedded system,
responsiveness is one of the most important traits that all users
crave, and it can be improved by optimizing the booting process.

Since many programs are initialized during booting process, it is
time consuming to access storage device during boot up process. In
modern embedded Linux systems, kernel and user program image
stored in storage or non-volatile memory are loaded to main mem-
ory during booting process. However, instead of executing the pro-
gram directly from non-volatile memory, the system copies the
program that is to be executed to a faster main memory, such as
DRAM. Although the system may boot faster by reading programs
from NVRAM, one of the drawbacks is that all of the program code
has to be loaded to the DRAM every time the system boots up.

Non-Volatile RAM (NVRAM) is a common name for
byte-addressable persistent memory which is known to be a fast,
non-volatile, and low-power consumption device that can poten-
tially replace traditional storage or memory devices [5–7].

However, since various NVRAMs have different characteristics
and use different types of cell technologies, such as
magneto-resistive type, phase-change type, etc., it is very difficult
to generalize the performance of NVRAM based systems as shown
in Table 1.

We found that kernel image used in our experiments show that
about 90% of the kernel image has read-only attribute and the rest
has read-write attribute. It is time consuming to load read-only
sections of the program to the main memory every time the system
boots. We propose Latency-Aware Segment Relocation (LASER)
scheme that focuses on reducing the boot time by relocating the
read-only sections to NVRAM, removing loading time of these sec-
tions. The proposed scheme is also a NVRAM latency-aware pro-
gram loading scheme which is a function of program image size,
bandwidth of NVRAM, and boot time budget in NVRAM based
embedded Linux system. Since the volume and the speed of
NVRAM vary depending on the purpose of the embedded system,
measuring the performance of a system that exploits NVRAM as
a booting memory is not trivial. As an effort to provide a resolution
to the problem, we empirically make a linear model that projects
boot latency of a program image with concerning a latency of
NVRAM as well as loadable image size in a given boot time
constraint.

In order to evaluate the proposed scheme, we used two types of
evaluation boards: S5PC100 and Zynq7020. Both boards are based
on embedded Linux, but they have different CPU and memory sub-
systems. We observe that implementing LASER scheme on
S5PC100 board reduces booting time by 55%, from 16.1 s to 7.3 s,

http://dx.doi.org/10.1016/j.sysarc.2015.06.003
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

Journal of Systems Architecture 61 (2015) 361–373

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.06.003&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.06.003
http://dx.doi.org/10.1016/j.sysarc.2015.06.003
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


compared to the legacy booting scheme, and LASER scheme on
Zynq7020 board reduces booting time by 49% from 7.3 s to 4.5 s.

The main contributions of this paper are the following: (1) Our
LASER booting method reduces boot time by selectively loading
sections to NVRAM. (2) We design boot time model having the
detail process of loading program image to main memory. (3) We
compare the proposed LASER scheme to the legacy boot scheme,
and validate LASER scheme on two evaluation platforms. (4) We
evaluate LASER boot with boot time budget factors based on differ-
ent image sizes, boot time constraints, and NVRAM bandwidths.

2. Related works

Reducing boot time is not a trivial problem, but a profound one
which involves optimizing boot time of various embedded devices
through many trial-and-errors which is very time consuming.
There are many factors that influence the boot time. During boot-
ing, H/W components as well as arbitrary data structures need to
be initialized. Also, a number of programs have to be initialized
before the system can service users, and these programs include
BIOS, boot-loader, OS, and user applications.

There are many optimization techniques that can be applied on
different steps of the booting process. One optimization technique
makes image size small by removing debugging symbols or remov-
ing unnecessary packages and codes [8]. Another technique tries to
reduce the boot time by exploiting parallelism to maximize the uti-
lization of available resources [9]. Bot time optimization tech-
niques are divided into many different categories. This work
focuses on reducing the memory copy overhead using NVRAM.
We dedicate this section to discuss prior works related to loading
the program image.

There are a number of researches that take advantage of loading
to reduce the boot time [10,8]. Before powering off, Hibernation
[11]1 stores current state of the main memory to the storage as an
image. When the system is turned on the next time, the system
recovers its previous state of the system by loading the stored data
to the main memory. A benefit of using Hibernation comes from fast
recovery of system state and quick hand over of the control from the
system to the user, thereby reducing the stand-by power. Another
similar Suspend-to-Disk scheme is Snapshot boot scheme [12].
This scheme reduces startup time by taking a snapshot image out
of memory dump just after completing the boot and loading the
snapshot image to the RAM.

Main memory dump and restoration methods, such as
Hibernation and Snapshot boot scheme, however, require a signif-
icant amount of time in resuming and loading the image back to
the main memory. The time to hibernate and resume becomes
longer as the size of the image gets larger. As a solution to reduce
the time to create and resume in Hibernation, some of the works

propose creating a partial snapshot image with stage classification
[2,13–15].

One alternate way of creating a similar effect as Hibernation is
to use Suspend/Resume power management function [16]. 2 In this
approach, kernel manipulates PMU (Power Management Unit) to
enter a sleep mode and allows only a few critical devices to be active
with minimum standby power. A benefit of using Suspend/Resume
is that the system is instantly powered on without causing overhead
to load the data from storage. It has to be noted that the system is
not resuming from complete power down state but from sleep mode
which limits its applicability to those systems that need constant
power or is battery backed systems.

Execute-In-Place (XIP) scheme does not load program code to
the main memory; instead, it fetches program code directly from
a byte-addressable non-volatile memory (e.g., NOR Flash).
NOR-XIP is a suitable solution for single chip micro controller
because it requires simple memory organization, which consists
of limited amount of SRAM and NOR memory, in a lightweight
embedded system. Kernel XIP scheme [17] extends the XIP scheme
to embedded Linux. Kernel boot image is stored in NOR Flash
memory and the system executes boot code from NOR Flash.
Since NOR Flash, which runs program code, has slow access time
compared to DRAM, XIP has a performance drawback. Another lim-
itation of XIP is that it cannot compress the program image
because the program code must be readily available for execution.
Advanced XIP filesystem (AXFS) [18] addresses this problem by let-
ting filesystem exploit XIP or compressed method selectively.

In previous boot researches, different program loading methods
were used according to the memory performances. Therefore,
NVRAM with its byte-addressable and non-volatile features, would
need a new program loading scheme. There are a few works that
use NVRAM to improve boot performance. Kim et al. [19] address
NVRAM to reduce the device startup latency by merging a portion
of read only section on kernel image. Lee et al. [20] go a step further
than providing optimized scheme for segments described in Kim
et al. [19]. They provide an object filter to analyze the volatile attri-
bute of variables in codes. In this paper, we further develop the work
done by Kim et al. [19]. We extend the idea of selectively initializing
sections of kernel image on to a user program. To understand the
relationship between boot time budget and loadable image size
when using NVRAM, this paper analyzes the effect of NVRAM latency
which is not considered in the previous work. The proposed method
is not a stand-alone approach but a complimentary one that can be
used along with aforementioned boot time reducing techniques.

The rest of this paper is organized as follows. Section 3 illus-
trates each step of booting process. Section 4 analyzes these steps
and investigates ways to apply LASER scheme to user program
area. Then, Section 5 explains how to implement LASER scheme.
Section 6 presents our experiment setup and measurement meth-
ods. Along with the performance comparison between LASER boot

Table 1
Comparison of memory technologies [33].

Type SRAM DRAM HDD NAND PCRAM RRAM MRAM

Maturity Mass production Development
Non-volatility No Yes
Byte-addressability Yes No Yes

Density (F2) >100 6–8 2/3 4–5 8–16 >5 37

Read Latency <10 ns 10–60 ns 8.5 ms 25 us 48 ns < 10 ns < 10 ns
Write Latency <10 ns 10–60 ns 9.5 ms 200 us 40–150 ns 10 ns 12.5 ns
Energy per bit >1 pJ 2 pJ 0.1–1 J 10 nJ 100 pJ 2 pJ 0.02 pJ
Static power Yes Yes Yes No No No No
Endurance >1015 >1015 >1015 104 108 105 >1015

1 Also known as STD (Suspend-To-Disk). 2 Also known as STR (Suspend-To-RAM or Suspend).

362 M. Kim et al. / Journal of Systems Architecture 61 (2015) 361–373



Download English Version:

https://daneshyari.com/en/article/460492

Download Persian Version:

https://daneshyari.com/article/460492

Daneshyari.com

https://daneshyari.com/en/article/460492
https://daneshyari.com/article/460492
https://daneshyari.com

