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Diffusion-based kernel methods are commonly used for analyzing massive high 
dimensional datasets. These methods utilize a non-parametric approach to represent 
the data by using an affinity kernel that represents similarities, distances or 
correlations between data points. The kernel is based on a Markovian diffusion 
process, whose transition probabilities are determined by local distances between 
data points. Spectral analysis of this kernel provides a representation of the 
data, where Euclidean distances correspond to diffusion distances between data 
points. When the data lies on a low dimensional manifold, these diffusion distances 
encompass the geometry of the manifold. In this paper, we present a generalized 
approach for defining diffusion-based kernels by incorporating measure-based 
information, which represents the density or distribution of the data, together with 
its local distances. The generalized construction does not require an underlying 
manifold to provide a meaningful kernel interpretation but assumes a more 
relaxed assumption that the measure and its support are related to a locally low 
dimensional nature of the analyzed phenomena. This kernel is shown to satisfy 
the necessary spectral properties that are required in order to provide a low 
dimensional embedding of the data. The associated diffusion process is analyzed 
via its infinitesimal generator and the provided embedding is demonstrated in two 
geometric scenarios.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The utilization of kernel methods is a common practice in a non-parametric data analysis of massive high 
dimensional datasets. Usually, a limited set of underlying factors generates the high dimensional observable 
parameters via non-linear mappings. The non-parametric nature of this analysis overcomes the redundancies 
of the observable parameters and uncovers their underlying factors. These methods extend the well known 
MDS [9,18] method. They are based on a construction of an affinity kernel that encapsulates the relations 

* Corresponding author. Fax: +972 153 54 5694455.
E-mail address: amir@math.tau.ac.il (A. Averbuch).

http://dx.doi.org/10.1016/j.acha.2015.07.005
1063-5203/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.acha.2015.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:amir@math.tau.ac.il
http://dx.doi.org/10.1016/j.acha.2015.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2015.07.005&domain=pdf


A. Bermanis et al. / Appl. Comput. Harmon. Anal. 41 (2016) 190–213 191

(distances, similarities or correlations) between data points. Spectral analysis of this kernel provides an 
efficient representation of the data that simplifies its analysis.

The MDS method uses the eigenvectors of a Gram matrix, which contains the inner products between 
the data points in the analyzed dataset, to define a mapping of data points into an embedded space that 
preserves most of these inner products. This method is equivalent to PCA [17,16], which projects the data 
onto the span of the principal directions of the variance of the data. Both of these methods capture linear 
structures on the data. They separate between meaningful directions, which represent the distribution of 
the data, and noisy uncorrelated directions. The former ones are associated with significant eigenvalues (and 
eigenvectors) of the Gram matrix, while the latter ones are associated with small eigenvalues.

Kernel methods, such as Isomap [28], LLE [25] and Laplacian eigenmaps [1], Hessian eigenmaps [12] and 
local tangent space alignment [29,31], extend the MDS paradigm by considering locally linear structures in 
the data. These structures are assumed to form a low dimensional manifold that captures the dependencies 
between the observable parameters of the data. This is called the manifold assumption, and the data is 
assumed to be sampled from this manifold. The spectral embedding space in these methods preserves the 
geometry of the manifold, which incorporates the underlying factors of the data.

The diffusion maps (DM) method [6] is a popular kernel method that utilizes a stochastic diffusion process 
to analyze the data. It defines diffusion affinities via symmetric conjugation of a transition probability 
operator. These probabilities are based on local distances between the data points. The Euclidean distances 
in the embedded space represent the diffusion distances in the original space. When the data is sampled 
from a low dimensional manifold, the diffusion paths follow the manifold and the diffusion distances capture 
its geometry.

In this paper, we enhance the DM method by incorporating information about the distribution of the 
data, in addition to local distances on which DM is based. This distribution is expressed in term of a 
measure over the observable space. The measure (and its support) replace the manifold assumption. We 
assume that the measure quantifies the likelihood for the presence of data over the geometry of the space. 
This assumption is significantly less restrictive than the need to have a manifold present. In practice this 
measure can either be provided as an input (e.g., by a-priori knowledge or a statistical model), or deduced 
from a given training set (e.g., by a density estimator). The manifold assumption can be expressed in terms 
of the measure assumption by setting the measure to be concentrated around an underlying manifold or (in 
the extremely restrictive case), to be supported by the manifold. Therefore, the measure assumption is not 
only less restrictive than the manifold assumption but it also generalizes it.

Data sampling densities were considered (and modeled by density measures) in previous variations of the 
DM framework, such as [6,10,11]. However, such sampling densities are typically an artifact resulting from 
nonuniform sampling of the underlying geometry, and the analysis does not use them to directly model the 
geometry of the data. Indeed, the anisotropic kernel [6], for example, is specifically aimed to separate the 
sampling density from the manifold geometry by either fully or partly canceling its effects on the diffusion 
process via appropriate kernel normalization. An alternative approach, presented in [10,11], is to use the 
sampling densities to locally adjust the diffusion scales, which determine the sizes of local data patches over 
the underlying geometry. In both these cases, the used densities are estimated directly from the sampled 
data that is used to construct the kernel, using unnormalized version of the kernel itself. In order for this 
density estimation to be accurate, large amounts of data are required both for measuring and for representing 
the densities. Such amounts are indeed commonly available in many Big Data applications. However, as 
in most kernel method, the size of the DM kernel is quadratically related to the size of dataset. Thus, 
computational requirements limit the sampled dataset size that can be effectively used for its construction 
in applicative settings. Therefore, tying the density estimation process directly to the kernel construction 
may be impractical.

In the suggested construction, the used measure is separated from the distances and from the ana-
lyzed dataset. As mentioned before, this measure can either represent densities or some other distribution 
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