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Can compression algorithms be employed for recovering signals from their underde-
termined set of linear measurements? Addressing this question is the first step 
towards applying compression algorithms for compressed sensing (CS). In this paper, 
we consider a family of compression algorithms Cr , parametrized by rate r, for a 
compact class of signals Q ⊂ Rn. The set of natural images and JPEG at different 
rates are examples of Q and Cr, respectively. We establish a connection between the 
rate–distortion performance of Cr , and the number of linear measurements required 
for successful recovery in CS. We then propose compressible signal pursuit (CSP) 
algorithm and prove that, with high probability, it accurately and robustly recovers 
signals from an underdetermined set of linear measurements. We also explore the 
performance of CSP in the recovery of infinite dimensional signals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The field of compressed sensing (CS) was established on a keen observation that if a signal is sparse in 
a certain basis it can be recovered from far fewer random linear measurements than its ambient dimension 
[1–5]. In the last decade, CS recovery algorithms have evolved to capture more complicated signal structures 
such as group sparsity, low-rankness [6–28], and other broader notions of “structure” [29–32]. In this paper, 
we consider a different type of structure based on compression algorithms. Suppose that a class of signals 
can be “efficiently” compressed by a compression algorithm. Intuitively speaking, such classes of signals 
have a certain “structure” that enables the compression algorithm to represent them with fewer bits. These 
structures are often much more complicated than sparsity, and employing them in CS can potentially reduce 
the number of measurements required for signal recovery.
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In this paper, we aim to address the following problem. Is it possible to employ compression algorithms 
in CS and design compression-based CS algorithms that recover signals from their under-determined set of 
linear measurements? As we will prove in this paper, the answer to this question is affirmative. We propose 
a CS-recovery algorithm based on exhaustive search over the set of “compressible” signals, that, under a 
certain condition on the rate–distortion performance of the code, recovers signals from fewer measurements 
than their ambient dimensions. Since the signal lies in the analog domain, the compression code is lossy by 
default, and therefore the recovery is also not perfect. The error induced by the devised recovery algorithm 
depends on the quality of compression code. This result provides the first theoretical basis for using generic 
compression algorithms in CS.

We also extend our results to analog signals. Such extensions are important for many applications includ-
ing spectrum sensing [33–35]. Our generalization employs a new measurement technique, that is based on 
the projection of the signal onto several independent Wiener processes, and the CSP algorithm. We show 
that these two ingredients enable us to utilize most of our proof techniques in the problem of analog-CS as 
well.

The theoretical framework we develop shows a connection between the problem of compressed sensing 
and relevant problems in the filed of embedology [36–39]. As an application of this connection, we will derive 
several fundamental results of embedology as corollaries of our main results.

In this work we explore the application of a given compression code in designing a CS-recovery algo-
rithm. In a series of related papers, the authors of [31,32,40] theoretically prove the existence of universal
CS-recovery algorithms that require no prior knowledge about the structure of the signal. While some of 
the mathematical tools and techniques used here and in those papers are similar, the papers address differ-
ent questions. Unlike in [32], here we are interested in designing efficient CS-recovery algorithms that are 
designed for a specific class of signals. This goal is achieved by employing a given compression code tailored 
for that class.

The organization of the paper is as follows. Section 2 reviews the main concepts used in this paper. 
Section 3 formally states the problem addressed in the paper and introduces our compressible signal pursuit 
algorithm. Section 4 establishes a lower bound for the number of measurements any recovery method 
(based on compression algorithm) requires for accurate recovery. Section 5 and Section 6 summarize our 
main contributions. Section 7 extends our results to the class of analog signals. Section 8 reviews the related 
work in the literature. Section 9 includes the proofs of our main theorems. Finally, Section 10 concludes the 
paper.

2. Background

2.1. Notation

Boldfaced letters such as x and X represent vectors. Calligraphic letters denote sets and operators; the 
distinction will be clear from the context. Given a finite set A, |A| denotes its size. The �p-norm of x ∈ Rn

is defined as ‖x‖p � (
∑n

i=1 |xi|p)1/p. The �0-norm is also defined as ‖x‖0 � |{i : xi �= 0}|. Note that 
for p < 1, ‖ · ‖p is a semi-norm since it does not satisfy the triangle inequality. Throughout the paper log
denotes logarithm in base e, and logarithm in base 2 is denoted explicitly as log2.

2.2. Compression

Let Q denote a compact subset of Rn.1 Consider a compression algorithm for Q described by encoder 
and decoder mappings (E , D). Encoder

1 We extend our results to infinite dimensional spaces in Section 7.
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