Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

On a classification of fat bundles over compact homogeneous spaces

Maciej Bocheński, Anna Szczepkowska, Aleksy Tralle*, Artur Woike

Department of Mathematics and Computer Science, University of Warmia and Mazury, Sloneczna 54, 10-710 Olsztyn, Poland

ARTICLE INFO

Article history: Received 11 July 2016 Available online xxxx Communicated by Th. Friedrich

MSC: 53C10 53C20 53C30

 $\begin{array}{l} Keywords:\\ {\rm Homogeneous\ space}\\ {\rm Fat\ bundle}\\ G\mbox{-structure}\\ {\rm Invariant\ connection} \end{array}$

1. Introduction

Let P(M,G) be a principal bundle endowed with a connection form θ and its curvature form Ω . Let Ker $\theta = \mathcal{H} \subset TP$ be the corresponding horizontal distribution. Assume that the Lie algebra \mathfrak{g} of G is endowed with an invariant non-degenerate bilinear form $B_{\mathfrak{g}}$. We say that a vector $u \in \mathfrak{g}$ is fat or that the connection form θ is u-fat, if the bilinear two-form $B_{\mathfrak{g}}(\Omega(\cdot, \cdot), u)$ is non-degenerate on \mathcal{H} . If the fatness condition is fulfilled for every non-zero $u \in \mathfrak{g}$ then we say that the connection form θ is fat or that the principal bundle is fat. The role of the fatness condition in Riemannian geometry follows from its relation with the O'Neil tensor [2,18] of a specific fiberwise metric on the associated bundle. In greater detail, consider an associated bundle

$$F \to P \times_G F \to M.$$

* Corresponding author.

http://dx.doi.org/10.1016/j.difgeo.2016.07.007 0926-2245/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

This article deals with fat bundles. Bérard-Bergery classified all homogeneous bundles of that type. We ask a question of a possibility to generalize his description in the case of arbitrary G-structures over homogeneous spaces. We obtain necessary conditions for the existence of such bundles. These conditions yield a kind of classification of fat bundles associated with G-structures over compact homogeneous spaces provided that the connection in a G-structure is canonical.

© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: mabo@matman.uwm.edu.pl (M. Bocheński), anna.szczepkowska@matman.uwm.edu.pl (A. Szczepkowska), tralle@matman.uwm.edu.pl (A. Tralle), awoike@matman.uwm.edu.pl (A. Woike).

Endow F with a G-invariant Riemannian metric g_F , and M with a Riemannian metric g_M . Equip $P \times_G F$ with the *connection metric* defining it to be the Riemannian metric which equals g_F on F, $g(X^*, Y^*) = g_M(X, Y)$ for horizontal lifts X^* , Y^* of $X, Y \in TM$ respectively, and declaring TF and \mathcal{H} to be orthogonal with respect to g. For this metric the following holds. Let A_X denote the O'Neil tensor.

Theorem 1. [18] The connection metric g on $P \times_G F$ is complete and defines a Riemannian submersion $\pi: P \times_G F \to M$ with totally geodesic fiber F and with holonomy group a subgroup of G. Conversely, every Riemannian submersion over M with totally geodesic fibers arises in this fashion. Moreover, the O'Neil tensor for such submersion satisfies the equality

$$\theta(A_XY) = -\Omega(X,Y).$$

The condition of fatness is an important tool of constructing manifolds of positive and non-negative curvature [9,17]. In the Riemannian context, the following definition of fatness is used: a Riemannian submersion $\pi : E \to M$ with totally geodesic fibers is fat, if $A_X U \neq 0$ for all horizontal vector fields X and vertical vector fields U ("all vertizontal curvatures are positive"). For the associated bundles, the characterization of fatness of any connection is known [18] and can be formulated as follows.

Theorem 2. [18] The Riemannian submersion $P \times_G F \to M$ with totally geodesic fibers G/L is fat if and only if the 2-form $B_{\mathfrak{g}}(\Omega(X,Y),u)$ is non-degenerate on the horizontal distribution for all $u \in \mathfrak{l}^{\perp}$.

Keeping the above theorem in mind, from now on whenever we say that an associated bundle $G/L \rightarrow P/L \rightarrow M$ is fat, we mean that the set l^{\perp} consists of fat vectors. In this paper we consider associated bundles with homogeneous fibers since it was proved (see Proposition 2.6 in [18]) that every fat submersion necessarily has a homogeneous fiber. Note that the connection metric g depends on a (chosen) principal connection. The following is known.

1. There is an algebraic condition on the curvature tensor of the associated metric connection of the sphere bundles of the form

$$SO(n+1)/SO(n) \to P/SO(n) \to M$$

ensuring fatness (see Proposition 2.21 in [18]).

- 2. A theorem in [5] shows that the only fat SO(4)/SO(3)-bundle over S^4 is the Hopf bundle $S^7 \to S^4$.
- 3. A theorem of Bérard-Bergery [3] which classifies all homogeneous fat bundles, that is, associated bundles of the form $H/L \to K/L \to K/H$, where K, H, L are compact Lie groups. Note that in this case the classification is obtained for any invariant connection.
- 4. There are necessary conditions for fatness, see for example [8].

To stress the fact that in general the fatness condition is dependent on the choice of the connection, we will always refer to "fatness with respect to a connection". Here it seems to be instructive to compare [3] with the general problem. In the case of principal bundles $K \to K/H$, there is a one-to-one correspondence between the invariant connections and the linear maps $\Lambda : \mathfrak{k} \to \mathfrak{h}$ satisfying the conditions $\Lambda(X) = X$ for any $X \in \mathfrak{h}$, and $\Lambda([X,Y]) = [X,\Lambda(Y)]$ for all $X \in \mathfrak{h}, Y \in \mathfrak{k}$. If, for example, \mathfrak{k} is semisimple the fatness condition can be expressed as follows: for any $X \in \mathfrak{h}^{\perp}$ and any $Y \in \text{Ker }\Lambda$ there exists $Z \in \text{Ker }\Lambda$ such that $\langle X, \Lambda([Y,Z]) \rangle \neq 0$. Here $\langle \cdot, \cdot \rangle$ denotes the Killing form. The latter condition can be expressed entirely in terms of the Lie brackets of \mathfrak{k} . In general, the problem becomes much more complicated even for the invariant connections in *G*-structures. In this work we will adopt the following terminology. A homogeneous bundle

Download English Version:

https://daneshyari.com/en/article/4605752

Download Persian Version:

https://daneshyari.com/article/4605752

Daneshyari.com