Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Deformation in holomorphic Poisson manifolds

Xiang Ji

The Pennsylvania State University, New Kensington, PA, United States

ARTICLE INFO

Article history: Received 31 May 2016 Received in revised form 30 August 2016 Available online xxxx Communicated by J. Stasheff

MSC: 53D17

Keywords: Deformation Coisotropic submanifold Holomorphic Poisson manifold

1. Introduction

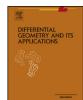
ABSTRACT

In this paper, we consider deforming a coisotropic submanifold Y in a holomorphic Poisson manifold (X, π) . Under the assumption that Y has a holomorphic tubular neighborhood, we associate Y with an L_{∞} -algebra that controls the deformations of Y. This L_{∞} -algebra can also be extended to control the simultaneous deformations of the holomorphic Poisson structure π and the coisotropic submanifold Y.

@ 2016 Elsevier B.V. All rights reserved.

Given an algebraic or geometric structure Σ , one may consider a correction of Σ as a structure of the same kind, which we call a deformation of Σ . In certain situations, such deformations can be simply modeled as the Maurer–Cartan elements of a differential graded Lie algebra (DGLA), but in more general setups, DGLA is not sufficient. Gradually, L_{∞} -algebra becomes a fixed tool in providing algebraic description of deformations. An L_{∞} -algebra L_{Σ} controls the deformations of Σ if there is a 1-1 correspondence between the deformations of Σ and the Maurer–Cartan elements of L_{Σ} .

Recently, fruitful results have been obtained on deformation problems. Y. Oh and J. Park [9] construct an L_{∞} -algebra that controls the deformations of a coisotropic submanifold in a symplectic manifold. A.S. Cattaneo and G. Felder associate an L_{∞} -algebra (in fact P_{∞} -algebra) to any coisotropic submanifold S of a Poisson manifold (M, π) [2]. However, only under certain regularity conditions, this L_{∞} -algebra controls the coisotropic deformations of S [10]. In the case of deforming a Lie subalgebroid E of a Lie algebroid $(A, [\cdot, \cdot], \rho)$, the author constructs an L_{∞} -algebra associated with E, and proves that it controls the deformations of E under certain regularity conditions [7].



E-mail address: xxj104@psu.edu.

In this paper, we consider the deformation problem of a coisotropic submanifold in a holomorphic Poisson manifold. We start with the more general setup – a coisotropic submanifold Y in an extended Poisson manifold X, and associate Y with an L_{∞} -algebra L_Y under the assumption that Y has a holomorphic tubular neighborhood. It turns out L_Y does not control the coisotropic deformations of Y in general. But in the particular case that X is holomorphic Poisson, an L_{∞} -subalgebra of L_Y can be constructed which controls the deformations of Y. Moreover, we can also control the simultaneous deformations of the holomorphic Poisson structure on X and the coisotropic submanifold Y.

Closely related with the question considered in this paper, the problem of formal deformations of a coisotropic submanifold in a holomorphic Poisson manifold is attacked in [1]. An L_{∞} -algebra that controls these formal deformations is constructed, but in a weaker sense that instead of requiring strictly isomorphic, they only require the corresponding Deligne-groupoid being equivalent to the groupoid of formal deformations. This L_{∞} -algebra does not require the existence of a holomorphic tubular neighborhood. However, it is quasi-isomorphic to the one we construct in Theorem 3.5 provided that a holomorphic tubular neighborhood exists and the extended Poisson structure degenerates to a holomorphic Poisson structure. Moreover, only formal deformations are consider in [1].

2. Preliminary

2.1. L_{∞} -algebras

We mainly follow [8], where readers may find more details. Let k be a field. A Z-graded vector space over k is a direct sum $V = \bigoplus_{k \in \mathbb{Z}} V_k$ of k-vector spaces. An element v is homogeneous if $v \in V_k$ for some k, and its degree is |v| = k. A linear subspace of V is a subset $V' \subseteq V$, such that $V'_k = V' \cap V_k$ is subspace of V_k for all k. A linear map $f : V \to W$ between graded vector spaces is a collection of linear maps $\{f_k : V_k \to W_k\}_{k \in \mathbb{Z}}$. The direct sum and tensor product of two graded vector spaces V and W are again graded vector spaces:

$$(V \oplus W)_k = V_k \oplus W_k,$$
 $(V \otimes W)_k = \bigoplus_{i+j=k} V_i \otimes W_j.$

For any $n \in \mathbb{Z}$, the *n*-th suspension of *V*, denoted by V[n], is a graded vector space with grading $(V[n])_k = V_{k+n}$. A linear map of degree *n* from *V* to *W* is a linear map $V \to W[n]$. For any $v \in V$, we use v[n] to denote the corresponding element in V[n].

Let S_k be the symmetric group of k letters. The symmetric action of S_k on $\otimes^k V$ is determined by

$$\sigma(v_1 \otimes \cdots \otimes v_k) = (-1)^{|v_j||v_{j+1}|} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)},$$

where $v_1, \dots, v_k \in V$ are homogeneous, and $\sigma \in S_k$ transposes the *j*-th and (j + 1)-th components. In general, the sign from the action of $\tau \in S_k$ on $v_1 \otimes \dots \otimes v_k$ is denoted by $e(\tau)$. A linear map $l_k : \otimes^k V \to V$ is symmetric if

$$l_k(v_{\tau(1)} \otimes \cdots \otimes v_{\tau(k)}) = e(\tau)l_k(v_1 \otimes \cdots \otimes v_k).$$

Denote by $S_{j,n-j}$ the set of (j, n-j) shuffles in S_n , i.e. $\tau \in S_{j,n-j}$ if and only if $\tau(1) < \cdots < \tau(j)$ and $\tau(j+1) < \cdots < \tau(n)$.

Definition 2.1. An L_{∞} -algebra is a \mathbb{Z} -graded vector space V together with a family of symmetric linear maps $\{m_k : \otimes^k V \to V[1]\}_{k \ge 0}$, such that the family of *Jacobiators* $\{J_n : \otimes^n V \to V[2]\}_{n \ge 1}$, defined by

$$J_n(v_1, \cdots, v_n) = \sum_{i+j=n+1} \sum_{\tau \in S_{j,n-j}} e(\tau) m_i(m_j(v_{\tau(1)}, \cdots, v_{\tau(j)}), v_{\tau(j+1)}, \cdots, v_{\tau(n)}),$$

Download English Version:

https://daneshyari.com/en/article/4605759

Download Persian Version:

https://daneshyari.com/article/4605759

Daneshyari.com